Suppr超能文献

宏观生物矿物学:巨型鲸鱼骨骼中的见解与谜题以及对仿生材料科学的展望

Macrobiomineralogy: Insights and Enigmas in Giant Whale Bones and Perspectives for Bioinspired Materials Science.

作者信息

Wysokowski Marcin, Zaslansky Paul, Ehrlich Hermann

机构信息

Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.

Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany.

出版信息

ACS Biomater Sci Eng. 2020 Oct 12;6(10):5357-5367. doi: 10.1021/acsbiomaterials.0c00364. Epub 2020 Sep 29.

Abstract

The giant bones of whales (Cetacea) are the largest extant biomineral-based constructs known. The fact that such mammalian bones can grow up to 7 m long raises questions about differences and similarities to other smaller bones. Size and exposure to environmental stress are good reasons to suppose that an unexplored level of hierarchical organization may be present that is not needed in smaller bones. The existence of such a macroscopic naturally grown structure with poorly described mechanisms for biomineralization is an example of the many yet unexplored phenomena in living organisms. In this article, we describe key observations in macrobiomineralization and suggest that the large scale of biomineralization taking place in selected whale bones implies they may teach us fundamental principles of the chemistry, biology, and biomaterials science governing bone formation, from atomistic to the macrolevel. They are also associated with a very lipid rich environment on those bones. This has implications for bone development and damage sensing that has not yet been fully addressed. We propose that whale bone construction poses extreme requirements for inorganic material storage, mediated by biomacromolecules. Unlike extinct large mammals, cetaceans still live deep in large terrestrial water bodies following eons of adaptation. The nanocomposites from which the bones are made, comprising biomacromolecules and apatite nanocrystals, must therefore be well adapted to create the macroporous hierarchically structured architectures of the bones, with mechanical properties that match the loads imposed in vivo. This massive skeleton directly contributes to the survival of these largest mammals in the aquatic environments of Earth, with structural refinements being the result of 60 million years of evolution. We also believe that the concepts presented in this article highlight the beneficial uses of multidisciplinary and multiscale approaches to study the structural peculiarities of both organic and inorganic phases as well as mechanisms of biomineralization in highly specialized and evolutionarily conserved hard tissues.

摘要

鲸类(鲸目)的巨大骨骼是已知现存最大的基于生物矿物质的结构体。这种哺乳动物的骨骼能长到7米长,这引发了关于其与其他较小骨骼异同的问题。尺寸以及暴露于环境压力下,使人们有理由推测可能存在一种在较小骨骼中不需要的未被探索的层级组织水平。这种具有生物矿化机制描述不完善的宏观自然生长结构的存在,是生物体中许多尚未被探索的现象之一。在本文中,我们描述了宏观生物矿化的关键观察结果,并表明在某些鲸类骨骼中发生的大规模生物矿化意味着它们可能会教给我们从原子层面到宏观层面控制骨骼形成的化学、生物学和生物材料科学的基本原理。它们还与这些骨骼上富含脂质的环境相关。这对骨骼发育和损伤感知有影响,但尚未得到充分解决。我们提出,鲸类骨骼的构建对由生物大分子介导的无机材料储存提出了极高要求。与已灭绝的大型哺乳动物不同,鲸类经过漫长的适应过程后仍生活在大型陆地水体深处。因此,构成骨骼的纳米复合材料,由生物大分子和磷灰石纳米晶体组成,必须很好地适应以形成骨骼的大孔层级结构,其机械性能要与体内所承受的负荷相匹配。这种巨大的骨骼直接有助于这些最大的哺乳动物在地球水生环境中的生存,结构上的优化是6000万年进化的结果。我们还认为,本文提出的概念凸显了采用多学科和多尺度方法研究高度专业化且在进化上保守的硬组织中有机和无机相的结构特性以及生物矿化机制的有益用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验