State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
Chem Soc Rev. 2024 May 7;53(9):4490-4606. doi: 10.1039/d2cs00513a.
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
自然界中的生物经过数十亿年的持续进化,形成了高性能的抗断裂生物矿化组织,如骨骼和牙齿,以满足机械和生物功能的需求,尽管构成生物矿化组织的大多数无机生物矿化物都很脆弱和易碎。在漫长的进化过程中,大自然已经发展出许多高效而智能的策略,来设计生物矿化组织的化学成分和结构,以赋予其优异的性能并适应周围环境。大多数生物矿化组织具有层次有序的结构,由非常小的纳米尺度构建块(纳米粒子、纳米纤维或纳米片)组成,以减少相应无机生物矿化物的固有弱点和脆性,防止裂纹的萌生和扩展,并允许高缺陷容忍度。从生物矿化组织中得出的仿生原理对于设计和构建高性能仿生材料是不可或缺的。近年来,基于这些仿生原理已经制备了大量的高性能仿生材料,并且涉及这个主题的文献数量庞大。因此,及时对这个热门话题进行全面而综合的综述非常重要,有助于推动这个快速发展的研究领域的未来发展。本文综述旨在全面、权威和具有批判性,广泛地引起科学界的兴趣,总结揭示生物矿化组织形成过程、组成和结构的最新进展,深入探讨从生物矿化组织中得出的指导方针,用于设计和构建高性能仿生材料,并讨论这个令人兴奋和快速发展的研究领域的最新进展、当前研究趋势、关键问题、未来主要研究方向和挑战,以及未来展望。
ACS Appl Bio Mater. 2023-9-18
ACS Biomater Sci Eng. 2023-4-10
Adv Mater. 2017-2-23
J Appl Biomater Funct Mater. 2017-11-10
Acta Biomater. 2022-8
Acc Chem Res. 2019-1-17
J R Soc Interface. 2014-12-6
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-9
Biotechnol Rep (Amst). 2025-8-15
Exploration (Beijing). 2025-3-6
Mater Today Bio. 2025-4-18
Angew Chem Int Ed Engl. 2025-6-2