Suppr超能文献

整合全面的功能注释以提高基于基因的关联分析的功效和准确性。

Integrating comprehensive functional annotations to boost power and accuracy in gene-based association analysis.

机构信息

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.

出版信息

PLoS Genet. 2020 Dec 15;16(12):e1009060. doi: 10.1371/journal.pgen.1009060. eCollection 2020 Dec.

Abstract

Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.

摘要

基于基因的关联测试对每个基因的多个变体进行基因型聚合,为全基因组关联研究(GWAS)提供了可解释的基因水平分析框架。早期的基于基因的测试应用通常侧重于罕见的编码变体;最近一波基于基因的方法,例如 TWAS,利用 eQTL 来探究调控关联。预计调控变体对于基于基因的分析特别有价值,因为迄今为止大多数 GWAS 关联是非编码的。然而,从调控关联中识别因果基因仍然具有挑战性和争议性。在这里,我们提出了一个统计框架和计算工具,用于将 GWAS 汇总统计数据与基于基因的分析中的异质注释进行整合,应用于全面的编码和组织特异性调控注释。我们在模拟研究和对来自英国生物库的 128 个特征的分析中比较了单注释、整体和无注释基于基因的测试识别因果基因的功效和准确性,发现将异质注释纳入基于基因的关联分析可以提高识别因果基因的功效和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cb/7737906/c60da7e9afe7/pgen.1009060.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验