Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
Departments of Epidemiology and Medicine, Diabetes Translational Research Center, Indiana University, Indianapolis, IN, USA.
Nat Genet. 2018 Apr;50(4):559-571. doi: 10.1038/s41588-018-0084-1. Epub 2018 Apr 9.
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
我们汇总了 81412 例 2 型糖尿病病例和 370832 名不同祖源对照的编码变异数据,鉴定出 40 个编码变异关联信号(P<2.2×10);其中 16 个位于已知风险相关位点之外。我们有两个重要发现。首先,这些信号中只有五个是由低频变异驱动的:即使对于这些信号,其效应大小也适中(比值比≤1.29)。其次,当我们使用大规模全基因组关联数据在其区域背景下对相关变异进行精细映射,考虑到复杂性状关联在编码序列中的全局富集时,仅对 16 个信号获得了编码变异因果关系的有力证据。在其他 13 个信号中,相关的编码变异显然代表“虚假线索”,有可能产生错误的机制推断。编码变异关联为复杂疾病提供了直接的生物学见解,并确定了经过验证的治疗靶点;然而,适当的机制推断需要仔细说明它们对疾病易感性的因果贡献。