Eulalio Tiffany, Sun Min Woo, Gevaert Olivier, Greicius Michael D, Montine Thomas J, Nachun Daniel, Montgomery Stephen B
Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
bioRxiv. 2024 May 1:2024.05.01.590171. doi: 10.1101/2024.05.01.590171.
We have developed the regional principal components (rPCs) method, a novel approach for summarizing gene-level methylation. rPCs address the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease (AD). In contrast to traditional averaging, rPCs leverage principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrated a 54% improvement in sensitivity over averaging in simulations, offering a robust framework for identifying subtle epigenetic variations. Applying rPCs to the AD brain methylation data in ROSMAP, combined with cell type deconvolution, we uncovered 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci (meQTL) with genome-wide association studies (GWAS) identified 17 genes with potential causal roles in AD, including and . Our approach is available in the Bioconductor package , opening avenues for research and facilitating a deeper understanding of the epigenetic landscape in complex diseases.
我们开发了区域主成分(rPCs)方法,这是一种用于总结基因水平甲基化的新方法。rPCs解决了在阿尔茨海默病(AD)等疾病中解读复杂表观遗传机制的挑战。与传统的平均方法不同,rPCs利用主成分分析来捕捉基因区域的复杂甲基化模式。我们的方法在模拟中显示出比平均方法灵敏度提高了54%,为识别细微的表观遗传变异提供了一个强大的框架。将rPCs应用于ROSMAP中的AD脑甲基化数据,并结合细胞类型反卷积,我们发现了838个与神经炎性斑块负担相关的差异甲基化基因,显著优于传统方法。将甲基化数量性状位点(meQTL)与全基因组关联研究(GWAS)相结合,确定了17个在AD中具有潜在因果作用的基因,包括 和 。我们的方法可在Bioconductor软件包中获取,为研究开辟了途径,并有助于更深入地了解复杂疾病中的表观遗传景观。