探索 - 指数的邻域。
Exploring the Neighborhood of -Exponentials.
作者信息
Santos Lima Henrique, Tsallis Constantino
机构信息
Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brazil.
National Institute of Science and Technology of Complex Systems, Rua Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brazil.
出版信息
Entropy (Basel). 2020 Dec 11;22(12):1402. doi: 10.3390/e22121402.
The -exponential form eqx≡[1+(1-q)x]1/(1-q)(e1x=ex) is obtained by optimizing the nonadditive entropy Sq≡k1-∑ipiqq-1 (with S1=SBG≡-k∑ipilnpi, where BG stands for Boltzmann-Gibbs) under simple constraints, and emerges in wide classes of natural, artificial and social complex systems. However, in experiments, observations and numerical calculations, it rarely appears in its pure mathematical form. It appears instead exhibiting crossovers to, or mixed with, other similar forms. We first discuss departures from -exponentials within crossover statistics, or by linearly combining them, or by linearly combining the corresponding -entropies. Then, we discuss departures originated by double-index nonadditive entropies containing Sq as particular case.
指数形式\eq形式eqx≡[1+(1 - q)x]1/(1 - q)(e1x = ex)是通过在简单约束条件下优化非加性熵Sq≡k1 - ∑ipiqq - 1(其中S1 = SBG≡ - k∑ipilnpi,BG代表玻尔兹曼 - 吉布斯)得到的,并且出现在广泛的自然、人工和社会复杂系统类别中。然而,在实验、观测和数值计算中,它很少以其纯粹的数学形式出现。相反,它出现时会与其他类似形式发生交叉或混合。我们首先讨论在交叉统计范围内偏离指数形式的情况,或者通过线性组合它们,或者通过线性组合相应的熵。然后,我们讨论由包含Sq作为特殊情况的双指数非加性熵引起的偏离。
相似文献
Entropy (Basel). 2020-12-11
Entropy (Basel). 2023-5-1
Entropy (Basel). 2022-11-25
Entropy (Basel). 2021-12-28
Entropy (Basel). 2023-3-28
Entropy (Basel). 2020-5-26
Entropy (Basel). 2019-7-15
Proc Natl Acad Sci U S A. 2005-10-25
引用本文的文献
本文引用的文献
Sci Rep. 2016-3-23
Phys Rev Lett. 2015-12-4
Phys Rev Lett. 2010-12-22
Phys Rev E Stat Nonlin Soft Matter Phys. 2010-8
Phys Rev E Stat Nonlin Soft Matter Phys. 2009-4
Phys Rev E Stat Nonlin Soft Matter Phys. 2005-4
Phys Rev E Stat Nonlin Soft Matter Phys. 2002-11
Phys Rev Lett. 2002-8-26