Suppr超能文献

脑波网络:稀疏动态模型是否易受脑部操纵实验的影响?

BrainWave Nets: Are Sparse Dynamic Models Susceptible to Brain Manipulation Experimentation?

作者信息

Nascimento Diego C, Pinto-Orellana Marco A, Leite Joao P, Edwards Dylan J, Louzada Francisco, Santos Taiza E G

机构信息

Institute of Mathematical Science and Computing, University of São Paulo, Sao Carlos, Brazil.

Departamento de Matemática, Universidad de Atacama de Chile, Copiapo, Chile.

出版信息

Front Syst Neurosci. 2020 Nov 26;14:527757. doi: 10.3389/fnsys.2020.527757. eCollection 2020.

Abstract

Sparse time series models have shown promise in estimating contemporaneous and ongoing brain connectivity. This paper was motivated by a neuroscience experiment using EEG signals as the outcome of our established interventional protocol, a new method in neurorehabilitation toward developing a treatment for visual verticality disorder in post-stroke patients. To analyze the [complex outcome measure (EEG)] that reflects neural-network functioning and processing in more specific ways regarding traditional analyses, we make a comparison among sparse time series models (classic VAR, GLASSO, TSCGM, and TSCGM-modified with non-linear and iterative optimizations) combined with a graphical approach, such as a Dynamic Chain Graph Model (DCGM). These dynamic graphical models were useful in assessing the role of estimating the brain network structure and describing its causal relationship. In addition, the class of DCGM was able to visualize and compare experimental conditions and brain frequency domains [using finite impulse response (FIR) filter]. Moreover, using multilayer networks, the results corroborate with the susceptibility of sparse dynamic models, bypassing the false positives problem in estimation algorithms. We conclude that applying sparse dynamic models to EEG data may be useful for describing intervention-relocated changes in brain connectivity.

摘要

稀疏时间序列模型在估计同步和正在进行的大脑连通性方面已显示出前景。本文的动机来自一项神经科学实验,该实验使用脑电图(EEG)信号作为我们既定干预方案的结果,这是一种神经康复中的新方法,旨在为中风后患者开发治疗视觉垂直障碍的疗法。为了以比传统分析更具体的方式分析反映神经网络功能和处理的[复杂结果指标(EEG)],我们在稀疏时间序列模型(经典向量自回归模型、套索回归、时间序列因果图模型以及经过非线性和迭代优化修改的时间序列因果图模型)与动态链图模型(DCGM)等图形方法相结合之间进行了比较。这些动态图形模型有助于评估估计大脑网络结构的作用并描述其因果关系。此外,DCGM类别能够[使用有限脉冲响应(FIR)滤波器]可视化和比较实验条件及脑频域。而且,使用多层网络,结果证实了稀疏动态模型的敏感性,绕过了估计算法中的假阳性问题。我们得出结论,将稀疏动态模型应用于EEG数据可能有助于描述大脑连通性中与干预相关的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d371/7726475/20a200a37d38/fnsys-14-527757-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验