Suppr超能文献

一种基于机器学习的帕金森病扩散张量成像数据集分类方法。

A machine learning-based classification approach on Parkinson's disease diffusion tensor imaging datasets.

作者信息

Prasuhn Jannik, Heldmann Marcus, Münte Thomas F, Brüggemann Norbert

机构信息

Department of Neurology, Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.

Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.

出版信息

Neurol Res Pract. 2020 Nov 10;2:46. doi: 10.1186/s42466-020-00092-y. eCollection 2020.

Abstract

INTRODUCTION

The presence of motor signs and symptoms in Parkinson's disease (PD) is the result of a long-lasting prodromal phase with an advancing neurodegenerative process. The identification of PD patients in an early phase is, however, crucial for developing disease-modifying drugs. The objective of our study is to investigate whether Diffusion Tensor Imaging (DTI) of the Substantia nigra (SN) analyzed by machine learning algorithms (ML) can be used to identify PD patients.

METHODS

Our study proposes the use of computer-aided algorithms and a highly reproducible approach (in contrast to manually SN segmentation) to increase the reliability and accuracy of DTI metrics used for classification.

RESULTS

The results of our study do not confirm the feasibility of the DTI approach, neither on a whole-brain level, ROI-labelled analyses, nor when focusing on the SN only.

CONCLUSIONS

Our study did not provide any evidence to support the hypothesis that DTI-based analysis, in particular of the SN, could be used to identify PD patients correctly.

摘要

引言

帕金森病(PD)中运动症状的出现是一个长期前驱期及进行性神经退行性变过程的结果。然而,早期识别PD患者对于开发疾病修饰药物至关重要。我们研究的目的是调查通过机器学习算法(ML)分析的黑质(SN)扩散张量成像(DTI)是否可用于识别PD患者。

方法

我们的研究提出使用计算机辅助算法和一种高度可重复的方法(与手动SN分割相反)来提高用于分类的DTI指标的可靠性和准确性。

结果

我们的研究结果未证实DTI方法在全脑水平、ROI标记分析或仅关注SN时的可行性。

结论

我们的研究没有提供任何证据支持基于DTI的分析,特别是对SN的分析可用于正确识别PD患者这一假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa33/7654034/42e14336d4cc/42466_2020_92_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验