Prasuhn Jannik, Heldmann Marcus, Münte Thomas F, Brüggemann Norbert
Department of Neurology, Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
Neurol Res Pract. 2020 Nov 10;2:46. doi: 10.1186/s42466-020-00092-y. eCollection 2020.
The presence of motor signs and symptoms in Parkinson's disease (PD) is the result of a long-lasting prodromal phase with an advancing neurodegenerative process. The identification of PD patients in an early phase is, however, crucial for developing disease-modifying drugs. The objective of our study is to investigate whether Diffusion Tensor Imaging (DTI) of the Substantia nigra (SN) analyzed by machine learning algorithms (ML) can be used to identify PD patients.
Our study proposes the use of computer-aided algorithms and a highly reproducible approach (in contrast to manually SN segmentation) to increase the reliability and accuracy of DTI metrics used for classification.
The results of our study do not confirm the feasibility of the DTI approach, neither on a whole-brain level, ROI-labelled analyses, nor when focusing on the SN only.
Our study did not provide any evidence to support the hypothesis that DTI-based analysis, in particular of the SN, could be used to identify PD patients correctly.
帕金森病(PD)中运动症状的出现是一个长期前驱期及进行性神经退行性变过程的结果。然而,早期识别PD患者对于开发疾病修饰药物至关重要。我们研究的目的是调查通过机器学习算法(ML)分析的黑质(SN)扩散张量成像(DTI)是否可用于识别PD患者。
我们的研究提出使用计算机辅助算法和一种高度可重复的方法(与手动SN分割相反)来提高用于分类的DTI指标的可靠性和准确性。
我们的研究结果未证实DTI方法在全脑水平、ROI标记分析或仅关注SN时的可行性。
我们的研究没有提供任何证据支持基于DTI的分析,特别是对SN的分析可用于正确识别PD患者这一假设。