Suppr超能文献

基于弥散加权神经影像学和图论的支持向量机分类对重度抑郁症的诊断

Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

机构信息

Neurosciences Program, Stanford University , Stanford, CA , USA ; Department of Psychology, Stanford University , Stanford, CA , USA.

Department of Psychology, Stanford University , Stanford, CA , USA ; Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California , Los Angeles, CA , USA.

出版信息

Front Psychiatry. 2015 Feb 18;6:21. doi: 10.3389/fpsyt.2015.00021. eCollection 2015.

Abstract

Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

摘要

最近,人们对理解重度抑郁症(MDD)中的大脑网络产生了浓厚的兴趣。可以使用弥散加权成像(DWI)在活体大脑中追踪神经通路;然后可以使用图论来研究由此产生的纤维网络的特性。迄今为止,在基于轨迹的图度量中尚未报告 MDD 中的全局异常,因此我们使用基于“支持向量机”的机器学习方法,根据多个大脑网络特性将抑郁患者与健康个体区分开来。我们还评估了特定图度量对这种区分的重要性。最后,我们进行了局部图分析,以识别网络特定节点的异常连接。我们能够使用全脑图度量对抑郁进行分类。小世界特性是分类最有用的图度量。右侧眶额回、右侧顶下小叶和左侧额前回在 MDD 中均显示出异常的网络连接。这是首次使用结构全局图度量来对抑郁个体进行分类。这些发现强调了未来研究的重要性,以了解不同成像方式下抑郁的网络特性,提高分类结果,并将网络改变与精神症状、药物和合并症联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a705/4332161/97c554ffff6f/fpsyt-06-00021-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验