Ye Huilin, Li Ying, Zhang Teng
Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, USA.
Soft Matter. 2021 Apr 7;17(13):3560-3568. doi: 10.1039/d0sm01662d. Epub 2020 Dec 16.
Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications, ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdisciplinary research calls for an easy to use and efficient modeling/simulation platform that can be leveraged by researchers with different backgrounds. Here we present a lattice model for hard-magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and volumetric change, so-called 'magttice'. Magnetic actuation is realized through prescribed nodal forces in magttice. We further implement the model into the framework of a large-scale atomic/molecular massively parallel simulator (LAMMPS) for highly efficient parallel simulations. The magttice is first validated by examining the deformation of ferromagnetic beam structures, and then applied to various smart structures, such as origami plates and magnetic robots. After investigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic robot in water, like jellyfish's locomotion, is further studied by coupling the magttice and lattice Boltzmann method (LBM). These examples indicate that the proposed magttice model can enable more efficient mechanical modeling and simulation for the rational design of magnetically driven smart structures.
磁驱动已成为一种强大且通用的机制,可用于多种应用,从软体机器人、生物医学设备到功能超材料。这项高度跨学科的研究需要一个易于使用且高效的建模/仿真平台,不同背景的研究人员都可以利用它。在此,我们通过将弹性变形能划分为晶格拉伸和体积变化,提出了一种用于硬磁软材料的晶格模型,即所谓的“磁晶格”。磁驱动通过磁晶格中规定的节点力来实现。我们进一步将该模型应用于大规模原子/分子大规模并行模拟器(LAMMPS)框架中,以进行高效的并行模拟。首先通过研究铁磁梁结构的变形来验证磁晶格,然后将其应用于各种智能结构,如折纸板和磁性机器人。在研究了软体机器人的静态变形和动态运动之后,通过将磁晶格与晶格玻尔兹曼方法(LBM)相结合,进一步研究了磁性机器人在水中的游动,类似于水母的运动。这些例子表明,所提出的磁晶格模型能够实现更高效的力学建模和仿真,以合理设计磁驱动智能结构。