Suppr超能文献

水致形状锁定磁性机器人

Water-Induced Shape-Locking Magnetic Robots.

作者信息

Lou He, Wang Yibin, Sheng Yifeng, Zhu He, Zhu Shiping, Yu Jiangfan, Zhang Qi

机构信息

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.

Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.

出版信息

Adv Sci (Weinh). 2024 Sep;11(36):e2405021. doi: 10.1002/advs.202405021. Epub 2024 Jul 29.

Abstract

Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.

摘要

能够进行自适应运动和形状重构的无系绳磁性软机器人,因其灵活性为各种应用开辟了可能性。然而,磁性软机器人通常由具有固定模量的软材料组成,这使得它们无法施加或承受较大的力,从而限制了对其新功能的探索。在此,引入了具有磁控形状变化和水致形状锁定的水致形状锁定磁性机器人。水致相分离使这些机器人能够经历模量转变,从干燥状态下的1.78兆帕转变为水化后的410兆帕。此外,主体材料固有的自愈特性使得能够直接组装具有复杂结构和磁化分布的变形结构和磁性软机器人。这些机器人可以通过磁驱动进行输送,并通过按需变形和随后的水致硬化来执行包括支撑、阻挡和抓取在内的编程任务。此外,还开发了一种水硬化磁性支架,并在血管模型中展示了其精确输送和水致形状锁定。无系绳输送、按需形状变化和水致硬化特性的结合,使得所提出的磁性机器人在生物医学应用中具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167d/11423202/0911ed9d4fc7/ADVS-11-2405021-g005.jpg

相似文献

1
Water-Induced Shape-Locking Magnetic Robots.
Adv Sci (Weinh). 2024 Sep;11(36):e2405021. doi: 10.1002/advs.202405021. Epub 2024 Jul 29.
2
Embedded shape morphing for morphologically adaptive robots.
Nat Commun. 2023 Sep 27;14(1):6023. doi: 10.1038/s41467-023-41708-6.
3
Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
Acc Chem Res. 2022 Jun 7;55(11):1533-1545. doi: 10.1021/acs.accounts.2c00046. Epub 2022 Apr 12.
4
A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
Soft Robot. 2019 Jun;6(3):333-345. doi: 10.1089/soro.2018.0082. Epub 2019 Feb 5.
5
A Graphene-Mica-Based Photo-Thermal Actuator for Small-Scale Soft Robots.
Small. 2024 Jul;20(28):e2311001. doi: 10.1002/smll.202311001. Epub 2024 Feb 11.
6
Hybrid Zwitterionic Hydrogels with Encoded Differential Swelling and Programmed Deformation for Small-Scale Robotics.
Small Methods. 2025 Mar;9(3):e2400812. doi: 10.1002/smtd.202400812. Epub 2024 Jul 24.
7
Kirigami-Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes.
Adv Sci (Weinh). 2022 Nov;9(32):e2203711. doi: 10.1002/advs.202203711. Epub 2022 Sep 30.
8
Biomimetic Locomotion of Electrically Powered "Janus" Soft Robots Using a Liquid Crystal Polymer.
Adv Mater. 2019 Sep;31(36):e1903452. doi: 10.1002/adma.201903452. Epub 2019 Jul 12.
9
Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field.
Biomimetics (Basel). 2023 Jun 22;8(3):269. doi: 10.3390/biomimetics8030269.
10
Low-Friction Soft Robots for Targeted Bacterial Infection Treatment in Gastrointestinal Tract.
Cyborg Bionic Syst. 2024 Jul 5;5:0138. doi: 10.34133/cbsystems.0138. eCollection 2024.

引用本文的文献

本文引用的文献

2
Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct.
Sci Adv. 2023 Dec 15;9(50):eadj0883. doi: 10.1126/sciadv.adj0883.
3
Amphibious Miniature Soft Jumping Robot with On-Demand In-Flight Maneuver.
Adv Sci (Weinh). 2023 Jun;10(18):e2207493. doi: 10.1002/advs.202207493. Epub 2023 Apr 25.
4
Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges.
Chem Rev. 2023 Jan 25;123(2):701-735. doi: 10.1021/acs.chemrev.2c00575. Epub 2022 Dec 28.
5
Magnetic soft robotic bladder for assisted urination.
Sci Adv. 2022 Aug 26;8(34):eabq1456. doi: 10.1126/sciadv.abq1456. Epub 2022 Aug 24.
6
Adaptive wireless millirobotic locomotion into distal vasculature.
Nat Commun. 2022 Aug 1;13(1):4465. doi: 10.1038/s41467-022-32059-9.
7
Solid-Liquid State Transformable Magnetorheological Millirobot.
ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30007-30020. doi: 10.1021/acsami.2c05251. Epub 2022 Jun 21.
8
Telerobotic neurovascular interventions with magnetic manipulation.
Sci Robot. 2022 Apr 13;7(65):eabg9907. doi: 10.1126/scirobotics.abg9907.
9
3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators.
Sci Robot. 2022 Feb 2;7(63):eabk2119. doi: 10.1126/scirobotics.abk2119.
10
Magnetic Soft Materials and Robots.
Chem Rev. 2022 Mar 9;122(5):5317-5364. doi: 10.1021/acs.chemrev.1c00481. Epub 2022 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验