The Francis Crick Institute, London, UK.
Russian Academy of Science, Koltzov Institute of Developmental Biology, Moscow, Russia.
J Gen Physiol. 2021 Jan 4;153(1). doi: 10.1085/jgp.202012657.
Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein-coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.
近年来,光学显微镜技术的进步使得我们能够以纳米级精度和 ∼10-ms 的时间分辨率在活细胞的质膜和胞质中可视化单个生物大分子。这使得新的发现成为可能,因为可以直接原位观察分子相互作用的位置和动力学,而不会受到体相测量的固有平均化的影响。迄今为止,大多数单分子成像研究都是在单细胞生物或培养的、通常经过化学固定的哺乳动物细胞系中进行的。然而,原代细胞培养物和源自多细胞生物的细胞系可能表现出与它们在天然组织环境中的细胞不同的特性,特别是在质膜的结构和组织方面。在这里,我们描述了一种简单的方法,可以在新鲜制备的活组织切片中对单个荧光标记的膜蛋白进行成像、定位和跟踪,并展示了这种方法如何提供关于心脏组织切片中 G 蛋白偶联受体运动和定位的信息。原则上,这种实验方法可用于对许多不同软组织样本的质膜中单分子的动力学进行成像,并且可以与其他实验技术结合使用。