Suppr超能文献

基于预计到达时间的交通拥堵预测。

Traffic congestion prediction based on Estimated Time of Arrival.

机构信息

Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.

出版信息

PLoS One. 2020 Dec 16;15(12):e0238200. doi: 10.1371/journal.pone.0238200. eCollection 2020.

Abstract

With the rapid expansion of sensor technologies and wireless network infrastructure, research and development of traffic associated applications, such as real-time traffic maps, on-demand travel route reference and traffic forecasting are gaining much more attention than ever before. In this paper, we elaborate on our traffic prediction application, which is based on traffic data collected through Google Map API. Our application is a desktop-based application that predicts traffic congestion state using Estimated Time of Arrival (ETA). In addition to ETA, the prediction system takes into account various features such as weather, time period, special conditions, holidays, etc. The label of the classifier is identified as one of the five traffic states i.e. smooth, slightly congested, congested, highly congested or blockage. The results demonstrate that the random forest classification algorithm has the highest prediction accuracy of 92 percent followed by XGBoost and KNN respectively.

摘要

随着传感器技术和无线网络基础设施的快速扩展,交通相关应用的研究和开发,如实时交通图、按需旅行路线参考和交通预测,比以往任何时候都受到了更多的关注。在本文中,我们详细介绍了我们的交通预测应用程序,该应用程序基于通过 Google Map API 收集的交通数据。我们的应用程序是一个基于桌面的应用程序,使用预计到达时间 (ETA) 来预测交通拥堵状态。除了 ETA,预测系统还考虑了天气、时间段、特殊条件、节假日等各种特征。分类器的标签被确定为五种交通状态之一,即畅通、轻度拥堵、拥堵、高度拥堵或堵塞。结果表明,随机森林分类算法的预测准确率最高,为 92%,其次是 XGBoost 和 KNN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a28b/7743965/06bcc4c0c884/pone.0238200.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验