Suppr超能文献

基于异构数据源的混合 LSTM-GRU 模型在城市交通速度预测中的应用。

Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas.

机构信息

Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan.

University Institute of Information Technology, Pir Mehr Ali Shah University of Arid Agriculture, Rawalpindi 46000, Pakistan.

出版信息

Sensors (Basel). 2022 Apr 27;22(9):3348. doi: 10.3390/s22093348.

Abstract

With the advent of the Internet of Things (IoT), it has become possible to have a variety of data sets generated through numerous types of sensors deployed across large urban areas, thus empowering the notion of smart cities. In smart cities, various types of sensors may fall into different administrative domains and may be accessible through exposed Application Program Interfaces (APIs). In such setups, for traffic prediction in Intelligent Transport Systems (ITS), one of the major prerequisites is the integration of heterogeneous data sources within a preprocessing data pipeline resulting into hybrid feature space. In this paper, we first present a comprehensive algorithm to integrate heterogeneous data obtained from sensors, services, and exogenous data sources into a hybrid spatial-temporal feature space. Following a rigorous exploratory data analysis, we apply a variety of deep learning algorithms specialized for time series geospatial data and perform a comparative analysis of Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and their hybrid combinations. The hybrid LSTM-GRU model outperforms the rest with Root Mean Squared Error () of 4.5 and Mean Absolute Percentage Error () of 6.67%.

摘要

随着物联网 (IoT) 的出现,通过在大型城市中部署大量不同类型的传感器,可以生成各种数据集,从而实现智慧城市的概念。在智慧城市中,各种类型的传感器可能属于不同的管理域,并且可以通过暴露的应用程序编程接口 (API) 进行访问。在这种设置中,对于智能交通系统 (ITS) 中的交通预测,主要前提之一是在预处理数据管道中将异构数据源集成到混合特征空间中。在本文中,我们首先提出了一种综合算法,将来自传感器、服务和外部数据源的异构数据集成到混合时空特征空间中。在进行严格的探索性数据分析之后,我们应用了专门针对时间序列地理空间数据的各种深度学习算法,并对长短期记忆 (LSTM)、门控循环单元 (GRU)、卷积神经网络 (CNN) 及其混合组合进行了比较分析。混合 LSTM-GRU 模型的均方根误差 (RMSE) 为 4.5,平均绝对百分比误差 (MAPE) 为 6.67%,优于其他模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61cb/9099662/af116ce77082/sensors-22-03348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验