Suppr超能文献

阿尔茨海默病 APP 敲入小鼠模型的脉冲追踪蛋白质组学研究表明,突触功能障碍起源于突触前末梢。

Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals.

机构信息

Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Cell Syst. 2021 Feb 17;12(2):141-158.e9. doi: 10.1016/j.cels.2020.11.007. Epub 2020 Dec 15.

Abstract

Compromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aβ) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aβ accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired. Presynaptic proteins with impaired turnover, particularly synaptic vesicle (SV)-associated proteins, have elevated levels, misfold in both a plaque-dependent and -independent manner, and interact with APP and Aβ. Concurrent with elevated levels of SV-associated proteins, we found an enlargement of the SV pool as well as enhancement of presynaptic potentiation. Together, our findings reveal that the presynaptic terminal is particularly vulnerable and represents a critical site for manifestation of initial AD etiology. A record of this paper's transparent peer review process is included in the Supplemental Information.

摘要

蛋白稳态失衡是阿尔茨海默病(AD)中斑块和缠结积累的基础。为了观察淀粉样蛋白β(Aβ)蛋白毒性早期的蛋白周转,我们在三个 AD 遗传模型的小鼠脑中进行了脉冲追踪蛋白质组学研究,这些模型在斑块积累之前和疾病进展过程中敲入淀粉样前体蛋白(APP)的等位基因。在 Aβ积累的初始阶段,与突触前末梢相关的蛋白周转会被选择性地损害。周转受损的突触前蛋白,特别是与突触小泡(SV)相关的蛋白,其水平升高,以斑块依赖和非依赖的方式错误折叠,并与 APP 和 Aβ相互作用。与 SV 相关蛋白水平升高同时,我们发现 SV 池扩大,以及突触前增强增强。总之,我们的发现表明,突触前末梢特别脆弱,是最初 AD 病因表现的关键部位。本文透明同行评审过程的记录包含在补充信息中。

相似文献

2
Regulation of Synaptic Amyloid-β Generation through BACE1 Retrograde Transport in a Mouse Model of Alzheimer's Disease.
J Neurosci. 2017 Mar 8;37(10):2639-2655. doi: 10.1523/JNEUROSCI.2851-16.2017. Epub 2017 Feb 3.
7
Co-occurrence of Alzheimer's disease ß-amyloid and τ pathologies at synapses.
Neurobiol Aging. 2010 Jul;31(7):1145-52. doi: 10.1016/j.neurobiolaging.2008.07.021. Epub 2008 Sep 3.
10
Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus.
Acta Neuropathol. 2012 Jan;123(1):53-70. doi: 10.1007/s00401-011-0896-x. Epub 2011 Oct 22.

引用本文的文献

3
Biomarkers in Alzheimer's disease: new frontiers with olfactory models.
Inflammopharmacology. 2025 May 1. doi: 10.1007/s10787-025-01705-1.
9
Reduction of RAD23A extends lifespan and mitigates pathology in TDP-43 mice.
bioRxiv. 2024 Sep 14:2024.09.10.612226. doi: 10.1101/2024.09.10.612226.

本文引用的文献

2
Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease.
Front Cell Neurosci. 2020 Apr 17;14:72. doi: 10.3389/fncel.2020.00072. eCollection 2020.
3
The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review.
J Neuropathol Exp Neurol. 2020 Jun 1;79(6):568-584. doi: 10.1093/jnen/nlaa024.
4
Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression.
Neuron. 2020 Mar 18;105(6):975-991.e7. doi: 10.1016/j.neuron.2019.12.015. Epub 2020 Jan 8.
7
Alzheimer Disease: An Update on Pathobiology and Treatment Strategies.
Cell. 2019 Oct 3;179(2):312-339. doi: 10.1016/j.cell.2019.09.001. Epub 2019 Sep 26.
8
Network Analysis of a Membrane-Enriched Brain Proteome across Stages of Alzheimer's Disease.
Proteomes. 2019 Aug 27;7(3):30. doi: 10.3390/proteomes7030030.
9
Synaptotagmin 17 controls neurite outgrowth and synaptic physiology via distinct cellular pathways.
Nat Commun. 2019 Aug 6;10(1):3532. doi: 10.1038/s41467-019-11459-4.
10
Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease.
Cell Rep. 2019 Jul 23;28(4):1103-1116.e4. doi: 10.1016/j.celrep.2019.06.073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验