Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA; Currently, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
Neuron. 2020 Jul 22;107(2):257-273.e5. doi: 10.1016/j.neuron.2020.04.012. Epub 2020 May 8.
The brain's complex microconnectivity underlies its computational abilities and vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due to the small size and dense packing of its elements. Here, we describe a rapid, accessible super-resolution imaging and analysis workflow-SEQUIN-that quantifies central synapses in human tissue and animal models, characterizes their nanostructural and molecular features, and enables volumetric imaging of mesoscale synaptic networks without the production of large histological arrays. Using SEQUIN, we identify cortical synapse loss resulting from diffuse traumatic brain injury, a highly prevalent connectional disorder. Similar synapse loss is observed in three murine models of Alzheimer-related neurodegeneration, where SEQUIN mesoscale mapping identifies regional synaptic vulnerability. These results establish an easily implemented and robust nano-to-mesoscale synapse quantification and characterization method. They furthermore identify a shared mechanism-synaptopathy-between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.
大脑复杂的微观连接性是其计算能力的基础,也是其易受伤和患病的原因。由于其组成元素的体积小且密集,因此很难阐明这个突触网络的特征。在这里,我们描述了一种快速、易用的超高分辨率成像和分析工作流程——SEQUIN,它可以定量分析人类组织和动物模型中的中枢突触,描述它们的纳米结构和分子特征,并实现无需大量组织学阵列即可对中尺度突触网络进行体积成像。使用 SEQUIN,我们识别出弥漫性创伤性脑损伤导致的皮质突触损失,这是一种高度普遍的连接障碍。在三种与阿尔茨海默病相关的神经退行性疾病的小鼠模型中也观察到类似的突触损失,其中 SEQUIN 中尺度映射确定了区域突触的脆弱性。这些结果建立了一种易于实施且强大的纳米到中尺度突触定量和特征描述方法。此外,它们还确定了阿尔茨海默病神经退行性变与其最明确的表观遗传风险因素——脑外伤之间的共同机制——突触病。