Suppr超能文献

SECUIN 多尺度成像哺乳动物中枢突触揭示弥漫性创伤性脑损伤导致的突触连接丧失。

SEQUIN Multiscale Imaging of Mammalian Central Synapses Reveals Loss of Synaptic Connectivity Resulting from Diffuse Traumatic Brain Injury.

机构信息

Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.

McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA; Currently, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.

出版信息

Neuron. 2020 Jul 22;107(2):257-273.e5. doi: 10.1016/j.neuron.2020.04.012. Epub 2020 May 8.

Abstract

The brain's complex microconnectivity underlies its computational abilities and vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due to the small size and dense packing of its elements. Here, we describe a rapid, accessible super-resolution imaging and analysis workflow-SEQUIN-that quantifies central synapses in human tissue and animal models, characterizes their nanostructural and molecular features, and enables volumetric imaging of mesoscale synaptic networks without the production of large histological arrays. Using SEQUIN, we identify cortical synapse loss resulting from diffuse traumatic brain injury, a highly prevalent connectional disorder. Similar synapse loss is observed in three murine models of Alzheimer-related neurodegeneration, where SEQUIN mesoscale mapping identifies regional synaptic vulnerability. These results establish an easily implemented and robust nano-to-mesoscale synapse quantification and characterization method. They furthermore identify a shared mechanism-synaptopathy-between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.

摘要

大脑复杂的微观连接性是其计算能力的基础,也是其易受伤和患病的原因。由于其组成元素的体积小且密集,因此很难阐明这个突触网络的特征。在这里,我们描述了一种快速、易用的超高分辨率成像和分析工作流程——SEQUIN,它可以定量分析人类组织和动物模型中的中枢突触,描述它们的纳米结构和分子特征,并实现无需大量组织学阵列即可对中尺度突触网络进行体积成像。使用 SEQUIN,我们识别出弥漫性创伤性脑损伤导致的皮质突触损失,这是一种高度普遍的连接障碍。在三种与阿尔茨海默病相关的神经退行性疾病的小鼠模型中也观察到类似的突触损失,其中 SEQUIN 中尺度映射确定了区域突触的脆弱性。这些结果建立了一种易于实施且强大的纳米到中尺度突触定量和特征描述方法。此外,它们还确定了阿尔茨海默病神经退行性变与其最明确的表观遗传风险因素——脑外伤之间的共同机制——突触病。

相似文献

3
The synapse in traumatic brain injury.创伤性脑损伤中的突触。
Brain. 2021 Feb 12;144(1):18-31. doi: 10.1093/brain/awaa321.
4
Traumatic Brain Injury as a Disorder of Brain Connectivity.创伤性脑损伤作为一种脑连接障碍疾病。
J Int Neuropsychol Soc. 2016 Feb;22(2):120-37. doi: 10.1017/S1355617715000740.

引用本文的文献

9
Measurement of relative motion of the brain and skull in the mini-pig in-vivo.在体迷你猪脑与颅骨相对运动的测量。
J Biomech. 2023 Jul;156:111676. doi: 10.1016/j.jbiomech.2023.111676. Epub 2023 Jun 10.

本文引用的文献

3
Image scanning microscopy.图像扫描显微镜。
Curr Opin Chem Biol. 2019 Aug;51:74-83. doi: 10.1016/j.cbpa.2019.05.011. Epub 2019 Jun 13.
5
Architecture of the Mouse Brain Synaptome.小鼠大脑突触组学的结构。
Neuron. 2018 Aug 22;99(4):781-799.e10. doi: 10.1016/j.neuron.2018.07.007. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验