Suppr超能文献

甲壳类动物和头足类动物的神经胶质血脑屏障:综述

The glial blood-brain barrier of crustacea and cephalopods: a review.

作者信息

Abbott N J, Pichon Y

机构信息

Department of Physiology, King's College, London, U.K.

出版信息

J Physiol (Paris). 1987;82(4):304-13.

PMID:3332691
Abstract
  1. The glial blood-brain barrier of invertebrates is an accessible, polarised glial layer that permits study of glial cells in their normal relations with neurons. Crayfish 2. The glial "perineurium" forms the blood-brain interface in crayfish, and acts as a barrier to horseradish peroxidase (HRP) and ionic lanthanum. By contrast, the perineurium of the peripheral nervous system is relatively permeable. 3. The ionic permeability of the blood-brain interface can be studied in a sucrose gap chamber, using an extra-cellular microelectrode to monitor the potential across the perineurium following changes in the bathing medium. Subtraction of the microelectrode trace from the sucrose gap records gives the change in the axonal membrane potential. 4. Raised [K+] in the bath causes a complex change in perineurial potential, with the initial transient indicating that the outer (basal) glial membrane is highly K+ selective. The axonal response shows that the time constant for K+ uptake (tau u) and efflux (tau E) across the perineurium of the order of 3-4 min, but the interstitial [K+] in the steady state, [K+] infinity is always less than in the bathing medium. The results are explained by a model incorporating a K+ sink, which may be glial. 5. Strophanthidin and ethacrynic acid have little effect on tau u or K infinity, but cause a rise of tau E. Cold temperature pulses causes changes in the perineurial potential compatible with depolarisation of the inner (apical) membrane. A model is proposed with a Na+-K+-2 Cl co-transporter on the perineurial basal membrane, and an electrogenic Na+-K+-ATPase on the apical.membrane, consistent with results from vertebrate glial/ependymal epithelia. Cephalopods 6. The brain of the cuttlefish Sepia has an extensive system of microvessels. In the vertical and optic lobes studied, a perivascular glial layer forms a barrier to HRP. The occluding structure appears not to be a classical tight junction but may involve condensation of extracellular material. There is no barrier between retinal axons and blood. 7. Studies with radiolabelled polyethylene glycol (PEG4000) and EDTA show that the Sepia blood-brain barrier is as tight as the endothelial barrier of mammals. 8. A modification of the Oldendorf arterial injection technique is used to show that glucose transport at the Sepia barrier is mediated by a Na+-independent hexose carrier resembling that of mammalian red cells and blood-brain barrier. 9. The blood-axon interface fo mantle nerves in the squid Alloteuthis is relatively impermeable to small ions.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要
  1. 无脊椎动物的神经胶质血脑屏障是一层可触及的、极化的神经胶质层,便于研究神经胶质细胞与神经元的正常关系。小龙虾

  2. 神经胶质“神经束膜”在小龙虾中形成血脑界面,并对辣根过氧化物酶(HRP)和离子镧起到屏障作用。相比之下,外周神经系统的神经束膜通透性相对较高。

  3. 血脑界面的离子通透性可在蔗糖间隙室中进行研究,使用细胞外微电极监测在浴液介质变化后跨神经束膜的电位。从蔗糖间隙记录中减去微电极轨迹可得到轴突膜电位的变化。

  4. 浴液中[K⁺]升高会导致神经束膜电位发生复杂变化,初始瞬变表明外侧(基底)神经胶质膜对K⁺具有高度选择性。轴突反应表明,K⁺通过神经束膜的摄取时间常数(τu)和外流时间常数(τE)约为3 - 4分钟,但稳态时细胞间[K⁺],即[K⁺]∞始终低于浴液介质中的[K⁺]。结果由一个包含K⁺汇(可能是神经胶质)的模型解释。

  5. 毒毛花苷和依他尼酸对τu或K∞影响不大,但会导致τE升高。低温脉冲会引起神经束膜电位变化,与内侧(顶端)膜去极化一致。提出了一个模型,神经束膜基底膜上有一个Na⁺ - K⁺ - 2Cl共转运体,顶端膜上有一个生电Na⁺ - K⁺ - ATP酶,这与脊椎动物神经胶质/室管膜上皮的结果一致。头足类动物

  6. 乌贼Sepia的大脑有一个广泛的微血管系统。在所研究的垂直叶和视叶中,血管周围神经胶质层对HRP形成屏障。封闭结构似乎不是经典的紧密连接,可能涉及细胞外物质的凝聚。视网膜轴突与血液之间没有屏障。

  7. 用放射性标记的聚乙二醇(PEG4000)和乙二胺四乙酸进行的研究表明,Sepia的血脑屏障与哺乳动物的内皮屏障一样紧密。

  8. 对Oldendorf动脉注射技术进行了改进,以表明Sepia屏障处的葡萄糖转运由一种不依赖Na⁺的己糖载体介导,类似于哺乳动物红细胞和血脑屏障的载体。

  9. 鱿鱼Alloteuthis外套膜神经的血轴突界面对小离子相对不通透。(摘要截于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验