Suppr超能文献

STAN:基于现实世界证据的大流行预测时空注意力网络。

STAN: Spatio-Temporal Attention Network for Pandemic Prediction Using Real World Evidence.

作者信息

Gao Junyi, Sharma Rakshith, Qian Cheng, Glass Lucas M, Spaeder Jeffrey, Romberg Justin, Sun Jimeng, Xiao Cao

出版信息

ArXiv. 2020 Dec 7:arXiv:2008.04215v2.

Abstract

OBJECTIVE

The COVID-19 pandemic has created many challenges that need immediate attention. Various epidemiological and deep learning models have been developed to predict the COVID-19 outbreak, but all have limitations that affect the accuracy and robustness of the predictions. Our method aims at addressing these limitations and making earlier and more accurate pandemic outbreak predictions by (1) using patients' EHR data from different counties and states that encode local disease status and medical resource utilization condition; (2) considering demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into deep learning models.

MATERIALS AND METHODS

We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses an attention-based graph convolutional network to capture geographical and temporal trends and predict the number of cases for a fixed number of days into the future. We also designed a physical law-based loss term for enhancing long-term prediction. STAN was tested using both massive real-world patient data and open source COVID-19 statistics provided by Johns Hopkins university across all U.S. counties.

RESULTS

STAN outperforms epidemiological modeling methods such as SIR and SEIR and deep learning models on both long-term and short-term predictions, achieving up to 87% lower mean squared error compared to the best baseline prediction model.

CONCLUSIONS

By using information from real-world patient data and geographical data, STAN can better capture the disease status and medical resource utilization information and thus provides more accurate pandemic modeling. With pandemic transmission law based regularization, STAN also achieves good long-term prediction performance.

摘要

目的

新冠疫情带来了诸多亟待关注的挑战。已开发出各种流行病学和深度学习模型来预测新冠疫情爆发,但所有这些模型都存在局限性,影响了预测的准确性和稳健性。我们的方法旨在解决这些局限性,通过以下方式做出更早、更准确的疫情爆发预测:(1)使用来自不同县和州的患者电子健康记录(EHR)数据,这些数据编码了当地疾病状况和医疗资源利用情况;(2)考虑地点之间的人口统计学相似性和地理邻近性;(3)将疫情传播动态纳入深度学习模型。

材料与方法

我们提出了一种用于疫情预测的时空注意力网络(STAN)。它使用基于注意力的图卷积网络来捕捉地理和时间趋势,并预测未来固定天数内的病例数。我们还设计了一个基于物理定律的损失项来增强长期预测。使用大量真实世界患者数据以及约翰·霍普金斯大学提供的全美国各县开源新冠疫情统计数据对STAN进行了测试。

结果

在长期和短期预测方面,STAN均优于诸如SIR和SEIR等流行病学建模方法以及深度学习模型,与最佳基线预测模型相比,均方误差降低了多达87%。

结论

通过使用来自真实世界患者数据和地理数据的信息,STAN能够更好地捕捉疾病状况和医疗资源利用信息,从而提供更准确的疫情建模。通过基于疫情传播定律的正则化,STAN在长期预测性能方面也表现出色。

相似文献

6
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验