IQVIA, Cambridge, Massachusetts, USA.
University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
J Am Med Inform Assoc. 2021 Mar 18;28(4):733-743. doi: 10.1093/jamia/ocaa322.
We aim to develop a hybrid model for earlier and more accurate predictions for the number of infected cases in pandemics by (1) using patients' claims data from different counties and states that capture local disease status and medical resource utilization; (2) utilizing demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into a deep learning model.
We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses a graph attention network to capture spatio-temporal trends of disease dynamics and to predict the number of cases for a fixed number of days into the future. We also designed a dynamics-based loss term for enhancing long-term predictions. STAN was tested using both real-world patient claims data and COVID-19 statistics over time across US counties.
STAN outperforms traditional epidemiological models such as susceptible-infectious-recovered (SIR), susceptible-exposed-infectious-recovered (SEIR), and deep learning models on both long-term and short-term predictions, achieving up to 87% reduction in mean squared error compared to the best baseline prediction model.
By combining information from real-world claims data and disease case counts data, STAN can better predict disease status and medical resource utilization.
通过(1)使用来自不同县和州的患者索赔数据,这些数据可捕获当地疾病状况和医疗资源利用情况;(2)利用位置之间的人口统计学相似性和地理接近性;(3)将大流行传播动力学纳入深度学习模型,我们旨在开发一种混合模型,以便更早、更准确地预测大流行中的感染病例数。
我们提出了一种用于大流行预测的时空注意网络(STAN)。它使用图注意网络来捕获疾病动态的时空趋势,并预测未来固定天数内的病例数。我们还设计了基于动力学的损失项,以增强长期预测。使用来自美国县的真实患者索赔数据和随时间推移的 COVID-19 统计数据对 STAN 进行了测试。
在长期和短期预测方面,STAN 优于传统的流行病学模型,如易感-感染-恢复(SIR)、易感-暴露-感染-恢复(SEIR)和深度学习模型,与最佳基线预测模型相比,平均平方误差最多可降低 87%。
通过结合来自真实世界索赔数据和疾病病例计数数据的信息,STAN 可以更好地预测疾病状况和医疗资源利用情况。