Suppr超能文献

使用有限状态机建模从电子病历系统数据中自动分类全身性疾病及其病程:前瞻性验证研究

Automated Categorization of Systemic Disease and Duration From Electronic Medical Record System Data Using Finite-State Machine Modeling: Prospective Validation Study.

作者信息

Sai Prashanthi Gumpili, Deva Ayush, Vadapalli Ranganath, Das Anthony Vipin

机构信息

Department of eyeSmart EMR & AEye, LV Prasad Eye Institute, Hyderabad, Telangana, India.

International Institute of Information Technology, Hyderabad , Telangana, India.

出版信息

JMIR Form Res. 2020 Dec 17;4(12):e24490. doi: 10.2196/24490.

Abstract

BACKGROUND

One of the major challenges in the health care sector is that approximately 80% of generated data remains unstructured and unused. Since it is difficult to handle unstructured data from electronic medical record systems, it tends to be neglected for analyses in most hospitals and medical centers. Therefore, there is a need to analyze unstructured big data in health care systems so that we can optimally utilize and unearth all unexploited information from it.

OBJECTIVE

In this study, we aimed to extract a list of diseases and associated keywords along with the corresponding time durations from an indigenously developed electronic medical record system and describe the possibility of analytics from the acquired datasets.

METHODS

We propose a novel, finite-state machine to sequentially detect and cluster disease names from patients' medical history. We defined 3 states in the finite-state machine and transition matrix, which depend on the identified keyword. In addition, we also defined a state-change action matrix, which is essentially an action associated with each transition. The dataset used in this study was obtained from an indigenously developed electronic medical record system called eyeSmart that was implemented across a large, multitier ophthalmology network in India. The dataset included patients' past medical history and contained records of 10,000 distinct patients.

RESULTS

We extracted disease names and associated keywords by using the finite-state machine with an accuracy of 95%, sensitivity of 94.9%, and positive predictive value of 100%. For the extraction of the duration of disease, the machine's accuracy was 93%, sensitivity was 92.9%, and the positive predictive value was 100%.

CONCLUSIONS

We demonstrated that the finite-state machine we developed in this study can be used to accurately identify disease names, associated keywords, and time durations from a large cohort of patient records obtained using an electronic medical record system.

摘要

背景

医疗保健领域的主要挑战之一是,大约80%生成的数据仍为非结构化且未被使用。由于难以处理电子病历系统中的非结构化数据,在大多数医院和医疗中心,这些数据往往被忽视而未进行分析。因此,有必要对医疗保健系统中的非结构化大数据进行分析,以便我们能够最佳地利用并挖掘其中所有未被开发的信息。

目的

在本研究中,我们旨在从一个自主开发的电子病历系统中提取疾病列表、相关关键词以及相应的时间跨度,并描述从获取的数据集中进行分析的可能性。

方法

我们提出了一种新颖的有限状态机,用于从患者病史中顺序检测和聚类疾病名称。我们在有限状态机和转移矩阵中定义了3种状态,这取决于所识别的关键词。此外,我们还定义了一个状态变化动作矩阵,它本质上是与每次转移相关的动作。本研究中使用的数据集来自一个名为eyeSmart的自主开发的电子病历系统,该系统在印度一个大型多层眼科网络中实施。该数据集包括患者的既往病史,包含10000名不同患者的记录。

结果

我们使用有限状态机提取疾病名称和相关关键词,准确率为95%,灵敏度为94.9%,阳性预测值为100%。对于疾病持续时间的提取,该机器的准确率为93%,灵敏度为92.9%,阳性预测值为100%。

结论

我们证明,我们在本研究中开发的有限状态机可用于从使用电子病历系统获得的大量患者记录中准确识别疾病名称、相关关键词和时间跨度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da75/7775202/fa50c59bc943/formative_v4i12e24490_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验