UR1268 BIA, INRAE, 44300 Nantes, France.
Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
Biomacromolecules. 2021 Feb 8;22(2):743-753. doi: 10.1021/acs.biomac.0c01521. Epub 2020 Dec 17.
Thermoresponsive hydrogels present unique properties, such as tunable mechanical performance or changes in volume, which make them attractive for applications including wound healing dressings, drug delivery vehicles, and implants, among others. This work reports the implementation of bioinspired thermoresponsive hydrogels composed of xyloglucan (XG) and cellulose nanocrystals (CNCs). Starting from tamarind seed XG (XGt), thermoresponsive XG was obtained by enzymatic degalactosylation (DG-XG), which reduced the galactose residue content by ∼50% and imparted a reversible thermal transition. XG with native composition and comparable molar mass to DG-XG was produced by an ultrasonication treatment (XGu) for a direct comparison of behavior. The hydrogels were prepared by simple mixing of DG-XG or XGu with CNCs in water. Phase diagrams were established to identify the ratios of DG-XG or XGu to CNCs that yielded a viscous liquid, a phase-separated mixture, a simple gel, or a thermoresponsive gel. Gelation occurred at a DG-XG or XGu to CNC ratio higher than that needed for the full surface coverage of CNCs and required relatively high overall concentrations of both components (tested concentrations up to 20 g/L XG and 30 g/L CNCs). This is likely a result of the increase in effective hydrodynamic volume of CNCs due to the formation of XG-CNC complexes. Investigation of the adsorption behavior indicated that DG-XG formed a more rigid layer on CNCs compared to XGu. Rheological properties of the hydrogels were characterized, and a reversible thermal transition was found for DG-XG/CNC gels at 35 °C. This thermoresponsive behavior provides opportunities to apply this system widely, especially in the biomedical field, where the mechanical properties could be further tuned by adjusting the CNC content.
温敏水凝胶具有独特的性质,如可调的机械性能或体积变化,这使得它们在包括伤口愈合敷料、药物输送载体和植入物等在内的应用中具有吸引力。本工作报道了由木葡聚糖(XG)和纤维素纳米晶体(CNC)组成的仿生温敏水凝胶的实施。从罗望子种子 XG(XGt)开始,通过酶去半乳糖基化(DG-XG)获得温敏性 XG,其半乳糖残基含量减少约 50%,并赋予可逆的热转变。通过超声处理(XGu)制备具有天然组成和与 DG-XG 相当摩尔质量的 XG,以便直接比较行为。水凝胶通过简单地将 DG-XG 或 XGu 与 CNC 混合在水中制备。建立相图以确定 DG-XG 或 XGu 与 CNC 的比例,以得到粘性液体、相分离混合物、简单凝胶或温敏凝胶。凝胶化发生在 DG-XG 或 XGu 与 CNC 的比例高于完全覆盖 CNC 所需的比例,并且需要两种成分的相对较高的总浓度(测试浓度高达 20 g/L XG 和 30 g/L CNC)。这可能是由于 XG-CNC 复合物的形成导致 CNC 的有效流体力学体积增加的结果。对吸附行为的研究表明,与 XGu 相比,DG-XG 在 CNC 上形成了更刚性的层。水凝胶的流变性质得到了表征,在 35°C 下发现 DG-XG/CNC 凝胶具有可逆的热转变。这种温敏行为为该系统的广泛应用提供了机会,特别是在生物医学领域,通过调整 CNC 的含量可以进一步调整机械性能。