Suppr超能文献

具有潜在集成架构和对抗学习的深度去雾网络

Deep Dehazing Network With Latent Ensembling Architecture and Adversarial Learning.

作者信息

Li Yuenan, Liu Yuhang, Yan Qixin, Zhang Kuangshi

出版信息

IEEE Trans Image Process. 2021;30:1354-1368. doi: 10.1109/TIP.2020.3044208. Epub 2020 Dec 23.

Abstract

Most existing dehazing algorithms recover haze-free image by solving the hazy imaging model using estimated transmission map and global atmospheric light. However, inaccurate estimation of these variables and the strong assumptions of imaging model result in unrealistic dehazing results. In this paper, we use the adversarial game between a pair of neural networks to accomplish end-to-end photo-realistic dehazing. To avoid uniform contrast enhancement, the generator learns to simultaneously restore haze-free image and capture the non-uniformity of haze. The modules for the two tasks are assembled in sequential and parallel manners to enable information sharing at different levels, and the architecture of the generator implicitly forms an ensemble of dehazing models that allows for feature selection. A multi-scale discriminator competes with the generator by learning to detect dehazing artifacts and the inconsistency between dehazed image and the spatial variation of haze. Unlike existing works that penalize dehazing artifacts via hand-crafted loss, the proposed algorithm uses the identity mapping in the space of clear-scene images to regularize data-driven dehazing. The proposed work also addresses the adaptability of data-driven dehazing to high-level computer vision task. We propose a task-driven training strategy that can optimize the object detection performance on dehazed images without updating the parameters of object detector. Performance of the proposed algorithm is assessed on the RESIDE, I-Haze, and O-Haze benchmarks. The comparison with ten state-of-the-art algorithms shows that the proposed work is the best performer in most competitions.

摘要

大多数现有的去雾算法通过使用估计的透射率图和全局大气光来求解模糊成像模型,从而恢复无雾图像。然而,这些变量的不准确估计以及成像模型的强假设导致了不切实际的去雾结果。在本文中,我们使用一对神经网络之间的对抗博弈来完成端到端的逼真去雾。为了避免均匀对比度增强,生成器学习同时恢复无雾图像并捕捉雾的不均匀性。用于这两个任务的模块以顺序和并行方式组装,以实现不同层次的信息共享,并且生成器的架构隐式地形成了一个允许特征选择的去雾模型集合。一个多尺度判别器通过学习检测去雾伪像以及去雾图像与雾的空间变化之间的不一致来与生成器竞争。与现有的通过手工设计的损失惩罚去雾伪像的工作不同,所提出的算法在清晰场景图像空间中使用恒等映射来正则化数据驱动的去雾。所提出的工作还解决了数据驱动的去雾对高级计算机视觉任务的适应性问题。我们提出了一种任务驱动的训练策略,该策略可以在不更新目标检测器参数的情况下优化去雾图像上的目标检测性能。在所提出的算法在RESIDE、I-Haze和O-Haze基准上进行了评估。与十种最先进算法的比较表明,所提出的工作在大多数竞赛中是表现最佳的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验