Suppr超能文献

通过对雾天条件进行自校准实现去雾系统自动化

Automating a Dehazing System by Self-Calibrating on Haze Conditions.

作者信息

Ngo Dat, Lee Seungmin, Lee Gi-Dong, Kang Bongsoon

机构信息

Department of Electronics Engineering, Dong-A University, Busan 49315, Korea.

出版信息

Sensors (Basel). 2021 Sep 24;21(19):6373. doi: 10.3390/s21196373.

Abstract

Existing image dehazing algorithms typically rely on a two-stage procedure. The medium transmittance and lightness are estimated in the first stage, and the scene radiance is recovered in the second by applying the simplified Koschmieder model. However, this type of unconstrained dehazing is only applicable to hazy images, and leads to untoward artifacts in haze-free images. Moreover, no algorithm that can automatically detect the haze density and perform dehazing on an arbitrary image has been reported in the literature to date. Therefore, this paper presents an automated dehazing system capable of producing satisfactory results regardless of the presence of haze. In the proposed system, the input image simultaneously undergoes multiscale fusion-based dehazing and haze-density-estimating processes. A subsequent image blending step then judiciously combines the dehazed result with the original input based on the estimated haze density. Finally, tone remapping post-processes the blended result to satisfactorily restore the scene radiance quality. The self-calibration capability on haze conditions lies in using haze density estimate to jointly guide image blending and tone remapping processes. We performed extensive experiments to demonstrate the superiority of the proposed system over state-of-the-art benchmark methods.

摘要

现有的图像去雾算法通常依赖于两阶段过程。在第一阶段估计介质透过率和亮度,在第二阶段通过应用简化的科施米德模型恢复场景辐射率。然而,这种无约束的去雾仅适用于模糊图像,并且会在无雾图像中产生不良伪影。此外,迄今为止,文献中尚未报道能够自动检测雾度密度并对任意图像进行去雾的算法。因此,本文提出了一种自动去雾系统,无论是否存在雾气,都能产生令人满意的结果。在所提出的系统中,输入图像同时进行基于多尺度融合的去雾和雾度密度估计过程。随后的图像融合步骤然后根据估计的雾度密度明智地将去雾结果与原始输入进行组合。最后,色调重映射对融合结果进行后处理,以令人满意地恢复场景辐射率质量。对雾气条件的自校准能力在于使用雾度密度估计来共同指导图像融合和色调重映射过程。我们进行了广泛的实验,以证明所提出的系统优于现有最先进的基准方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f40/8513090/2f1558c5ade2/sensors-21-06373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验