Suppr超能文献

深度学习回溯方法预测 ICU 患者风险的电解质、代谢物和酸碱参数。

A deep learning backcasting approach to the electrolyte, metabolite, and acid-base parameters that predict risk in ICU patients.

机构信息

Department of Anesthesiology and Intensive Care Medicine, Medius Clinic Nürtingen, Academic Teaching Hospital of the University of Tübingen, Tübingen, Germany.

出版信息

PLoS One. 2020 Dec 17;15(12):e0242878. doi: 10.1371/journal.pone.0242878. eCollection 2020.

Abstract

BACKGROUND

A powerful risk model allows clinicians, at the bedside, to ensure the early identification of and decision-making for patients showing signs of developing physiological instability during treatment. The aim of this study was to enhance the identification of patients at risk for deterioration through an accurate model using electrolyte, metabolite, and acid-base parameters near the end of patients' intensive care unit (ICU) stays.

METHODS

This retrospective study included 5157 adult patients during the last 72 hours of their ICU stays. The patients from the MIMIC-III database who had serum lactate, pH, bicarbonate, potassium, calcium, glucose, chloride, and sodium values available, along with the times at which those data were recorded, were selected. Survivor data from the last 24 hours before discharge and four sets of nonsurvivor data from 48-72, 24-48, 8-24, and 0-8 hours before death were analyzed. Deep learning (DL), random forest (RF) and generalized linear model (GLM) analyses were applied for model construction and compared in terms of performance according to the area under the receiver operating characteristic curve (AUC). A DL backcasting approach was used to assess predictors of death vs. discharge up to 72 hours in advance.

RESULTS

The DL, RF and GLM models achieved the highest performance for nonsurvivors 0-8 hours before death versus survivors compared with nonsurvivors 8-24, 24-48 and 48-72 hours before death versus survivors. The DL assessment outperformed the RF and GLM assessments and achieved discrimination, with an AUC of 0.982, specificity of 0.947, and sensitivity of 0.935. The DL backcasting approach achieved discrimination with an AUC of 0.898 compared with the DL native model of nonsurvivors from 8-24 hours before death versus survivors with an AUC of 0.894. The DL backcasting approach achieved discrimination with an AUC of 0.871 compared with the DL native model of nonsurvivors from 48-72 hours before death versus survivors with an AUC of 0.846.

CONCLUSIONS

The DL backcasting approach could be used to simultaneously monitor changes in the electrolyte, metabolite, and acid-base parameters of patients who develop physiological instability during ICU treatment and predict the risk of death over a period of hours to days.

摘要

背景

强大的风险模型可使临床医生在床边尽早识别和决策出现生理不稳定迹象的患者,以确保其得到治疗。本研究旨在通过使用患者在重症监护病房(ICU)入住最后时刻的电解质、代谢物和酸碱参数,建立一个准确的模型来提高对病情恶化患者的识别能力。

方法

本回顾性研究纳入了 5157 名 ICU 入住最后 72 小时的成年患者。选择 MIMIC-III 数据库中具有血清乳酸、pH 值、碳酸氢盐、钾、钙、葡萄糖、氯和钠值以及记录这些数据时间的患者。分析出院前最后 24 小时的存活者数据以及死亡前 48-72、24-48、8-24 和 0-8 小时的 4 组非存活者数据。应用深度学习(DL)、随机森林(RF)和广义线性模型(GLM)分析进行模型构建,并根据接收者操作特征曲线下面积(AUC)评估性能。采用 DL 回溯方法评估在 72 小时内预测死亡与出院的预测因子。

结果

与非存活者 8-24、24-48 和 48-72 小时前死亡与存活者相比,DL、RF 和 GLM 模型在非存活者 0-8 小时前死亡与存活者的表现最高。与 RF 和 GLM 评估相比,DL 评估的区分度更高,AUC 为 0.982,特异性为 0.947,敏感性为 0.935。与非存活者 8-24 小时前死亡与存活者的 DL 原始模型 AUC 为 0.894 相比,DL 回溯方法的 AUC 为 0.898。与非存活者 48-72 小时前死亡与存活者的 DL 原始模型 AUC 为 0.846 相比,DL 回溯方法的 AUC 为 0.871。

结论

DL 回溯方法可用于同时监测 ICU 治疗期间出现生理不稳定患者的电解质、代谢物和酸碱参数变化,并在数小时至数天内预测死亡风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe8/7746262/dc829a32d06d/pone.0242878.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验