Neishabouri Ahmad, Wahl Niklas, Mairani Andrea, Köthe Ullrich, Bangert Mark
Department of Medical Physics in Radiation Oncology, German Cancer Research Center - DKFZ, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
Medical Faculty, University Heidelberg, Heidelberg, Germany.
Med Phys. 2021 Apr;48(4):1893-1908. doi: 10.1002/mp.14658. Epub 2021 Mar 11.
To investigate the feasibility and accuracy of proton dose calculations with artificial neural networks (ANNs) in challenging three-dimensional (3D) anatomies.
A novel proton dose calculation approach was designed based on the application of a long short-term memory (LSTM) network. It processes the 3D geometry as a sequence of two-dimensional (2D) computed tomography slices and outputs a corresponding sequence of 2D slices that forms the 3D dose distribution. The general accuracy of the approach is investigated in comparison to Monte Carlo reference simulations and pencil beam dose calculations. We consider both artificial phantom geometries and clinically realistic lung cases for three different pencil beam energies.
For artificial phantom cases, the trained LSTM model achieved a 98.57% γ-index pass rate ([1%, 3 mm]) in comparison to MC simulations for a pencil beam with initial energy 104.25 MeV. For a lung patient case, we observe pass rates of 98.56%, 97.74%, and 94.51% for an initial energy of 67.85, 104.25, and 134.68 MeV, respectively. Applying the LSTM dose calculation on patient cases that were fully excluded from the training process yields an average γ-index pass rate of 97.85%.
LSTM networks are well suited for proton dose calculation tasks. Further research, especially regarding model generalization and computational performance in comparison to established dose calculation methods, is warranted.
研究在具有挑战性的三维(3D)解剖结构中,使用人工神经网络(ANN)进行质子剂量计算的可行性和准确性。
基于长短期记忆(LSTM)网络的应用,设计了一种新颖的质子剂量计算方法。该方法将3D几何结构作为一系列二维(2D)计算机断层扫描切片进行处理,并输出形成3D剂量分布的相应2D切片序列。与蒙特卡罗参考模拟和笔形束剂量计算相比,研究了该方法的总体准确性。我们考虑了三种不同笔形束能量下的人工体模几何结构和临床实际肺部病例。
对于人工体模病例,与初始能量为104.25 MeV的笔形束的蒙特卡罗模拟相比,训练后的LSTM模型实现了98.57%的γ指数通过率([1%,3 mm])。对于肺部患者病例,初始能量为67.85、104.25和134.68 MeV时,观察到的通过率分别为98.56%、97.74%和94.51%。将LSTM剂量计算应用于完全排除在训练过程之外的患者病例,平均γ指数通过率为97.85%。
LSTM网络非常适合质子剂量计算任务。有必要进行进一步的研究,特别是与已建立的剂量计算方法相比,关于模型泛化和计算性能方面的研究。