Li Muheng, Winterhalter Carla, Li Xia, Safai Sairos, Lomax Antony, Zhang Ye
Center for Proton Therapy, Paul Scherrer Institute (PSI), Switzerland.
Department of Physics, ETH Zurich, Switzerland.
Phys Imaging Radiat Oncol. 2025 Jul 5;35:100806. doi: 10.1016/j.phro.2025.100806. eCollection 2025 Jul.
Proton therapy currently relies on computed tomography (CT) imaging despite magnetic resonance imaging's (MRI) superior soft-tissue contrast. While synthetic CTs can be generated from magnetic resonance (MR) images, this introduces additional complexity. We present a deep learning-based dose engine enabling direct proton dose calculation from MR images to streamline workflows while maintaining Monte Carlo (MC)-level accuracy.
Using paired MR-CT scans from 39 brain tumor patients (29/3/7 for training/validation/testing), we developed a deep learning framework using various sequence models for individual proton pencil beam dose prediction. The framework processes beam-eye-view patches from 2000 random beam configurations per patient, varying in angles and energy, with corresponding MC dose distributions pre-calculated on CT. Models using CT images were trained for comparison.
The xLSTM architecture performed best for both MR and CT-based scenarios among the evaluated sequence models. For full treatment plans, our model achieved gamma pass rates with median 99.8 % (range: 98.6 %-99.9 %, 1 mm/1%), and median percentage dose errors of 0.2 % (range: 0.1 %-0.4 %) within patient bodies and 1.3 % (range: 0.8 %-3.7 %) in high-dose regions (>90 % prescription dose). The model required only 3 ms per beam prediction compared to 2 s for MC simulation.
This study demonstrated the feasibility of MC-quality proton dose calculations directly from MR images for brain tumor patients, achieving comparable accuracy with faster computation and simplified implementation.
尽管磁共振成像(MRI)具有出色的软组织对比度,但质子治疗目前仍依赖计算机断层扫描(CT)成像。虽然可以从磁共振(MR)图像生成合成CT,但这会带来额外的复杂性。我们提出了一种基于深度学习的剂量引擎,能够直接从MR图像进行质子剂量计算,以简化工作流程,同时保持蒙特卡罗(MC)级别的准确性。
我们使用来自39例脑肿瘤患者的配对MR-CT扫描数据(29/3/7用于训练/验证/测试),开发了一个深度学习框架,使用各种序列模型进行单个质子笔形束剂量预测。该框架处理每位患者2000种随机束配置的射野视角图像块,这些配置在角度和能量上有所不同,并在CT上预先计算了相应的MC剂量分布。使用CT图像的模型也进行了训练以作比较。
在评估的序列模型中,xLSTM架构在基于MR和CT的两种情况下表现最佳。对于完整的治疗计划,我们的模型在患者体内的伽马通过率中位数为99.8%(范围:98.6%-99.9%,1毫米/1%);在高剂量区域(>90%处方剂量),剂量误差百分比中位数为0.2%(范围:0.1%-0.4%),在体外为1.3%(范围:0.8%-3.7%))。与MC模拟每束预测需要2秒相比,该模型每束预测仅需3毫秒。
本研究证明了直接从脑肿瘤患者的MR图像进行MC质量质子剂量计算的可行性,在计算速度更快且实施更简化的情况下实现了可比的准确性。