Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan.
Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan.
J Control Release. 2021 Feb 10;330:61-71. doi: 10.1016/j.jconrel.2020.12.013. Epub 2020 Dec 14.
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has considerable therapeutic potential for use in treating a wide range of intractable genetic and infectious diseases including hepatitis B virus (HBV) infections. While non-viral delivery technologies for the CRISPR/Cas system are expected to have clinical applications, difficulties associated with the clinically relevant synthesis of formulations and the poor efficiency of delivery severely hinder therapeutic genome editing. We report herein on the production of a lipid nanoparticle (LNP)-based CRISPR/Cas ribonucleoprotein (RNP) delivery nanoplatform synthesized using a clinically relevant mixer-equipped microfluidic device. DNA cleavage activity and the aggregation of Cas enzymes was completely avoided under the optimized synthetic conditions. The optimized formulation, which was identified through 2 steps of design of experiments, exhibited excellent gene disruption (up to 97%) and base substitution (up to 23%) without any apparent cytotoxicity. The addition of negative charges to the RNPs by complexing single-stranded oligonucleotide (ssON) significantly enhanced the delivery of both Cas9 and Cpf1 RNPs. The optimized formulation significantly suppressed both HBV DNA and covalently closed circular DNA (cccDNA) in HBV-infected human liver cells compared to adeno-associated virus type 2 (AAV2). These findings represent a significant contribution to the development of CRISPR/Cas RNP delivery technology and its practical applications in genome editing therapy.
簇状规律间隔短回文重复序列 (CRISPR)-相关 (Cas) 系统在治疗包括乙型肝炎病毒 (HBV) 感染在内的广泛遗传和传染病方面具有很大的治疗潜力。虽然用于 CRISPR/Cas 系统的非病毒递送技术有望具有临床应用,但与制剂的临床相关合成以及递送效率低下相关的困难严重阻碍了治疗性基因组编辑。我们在此报告了使用配备临床相关混合器的微流控设备合成的基于脂质纳米颗粒 (LNP) 的 CRISPR/Cas 核糖核蛋白 (RNP) 递送纳米平台的生产。在优化的合成条件下,完全避免了 Cas 酶的 DNA 切割活性和聚集。通过两步实验设计确定的优化配方表现出出色的基因敲除(高达 97%)和碱基替换(高达 23%),而没有任何明显的细胞毒性。通过将单链寡核苷酸 (ssON) 复合到 RNPs 上增加负电荷,显著增强了 Cas9 和 Cpf1 RNPs 的递送。与腺相关病毒 2 型 (AAV2) 相比,优化的配方显著抑制了乙型肝炎病毒感染的人肝细胞中的乙型肝炎病毒 DNA 和共价闭合环状 DNA (cccDNA)。这些发现为 CRISPR/Cas RNP 递送技术的发展及其在基因组编辑治疗中的实际应用做出了重要贡献。