Suppr超能文献

金属氧化物半导体-表面等离子体激元混合平台:生物应用的下一代工具

MoS-Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications.

作者信息

Moussa Nayra A M, Lee Seungah, Kang Seong Ho

机构信息

Basic and Clinical Medical Science Department, Faculty of Dentistry, Deraya University, New Minya 61768, Egypt.

Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.

出版信息

Nanomaterials (Basel). 2025 Jan 13;15(2):111. doi: 10.3390/nano15020111.

Abstract

The combination of molybdenum disulfide (MoS) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue. This review explores various synthesis strategies for MoS-plasmonic hybrids, including seed-mediated growth, in situ deposition, and heterojunction formation, which enable tailored configurations optimized for specific biological applications. The primary focus areas include highly sensitive biosensors for detecting cancer and infectious disease biomarkers, high-resolution imaging of cellular dynamics, and the development of phototherapy methods that allow for accurate tumor ablation through light-induced thermal and reactive oxygen species generation. Despite the promising advancements of MoS-plasmonic hybrids, translating these platforms into clinical practice requires overcoming considerable challenges, such as synthesis reproducibility, toxicity, stability in physiological conditions, targeted delivery, and scalable manufacturing. Addressing these challenges is essential for realizing their potential as next-generation tools in diagnostics and targeted therapies.

摘要

二硫化钼(MoS)与等离子体纳米材料的结合,通过将MoS的生物相容性和高比表面积与等离子体金属的光学敏感性相结合,为生物应用开辟了新的可能性。这些MoS-等离子体混合系统在生物传感、生物成像和光疗等领域具有巨大潜力,其互补特性有助于改善检测、实时可视化和靶向治疗干预。MoS的可调光学特性,与金和银等贵金属的等离子体共振相结合,增强了信号放大,能够实现详细成像以及选择性光热或光动力疗法,同时将对健康组织的影响降至最低。本文综述探讨了MoS-等离子体混合材料的各种合成策略,包括种子介导生长、原位沉积和异质结形成,这些策略能够实现针对特定生物应用进行优化的定制结构。主要关注领域包括用于检测癌症和传染病生物标志物的高灵敏度生物传感器、细胞动力学的高分辨率成像,以及通过光诱导产热和产生活性氧实现精确肿瘤消融的光疗方法的开发。尽管MoS-等离子体混合材料取得了令人鼓舞的进展,但将这些平台转化为临床实践需要克服相当大的挑战,如合成再现性、毒性、生理条件下的稳定性、靶向递送和可扩展制造。应对这些挑战对于实现其作为诊断和靶向治疗下一代工具的潜力至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e65f/11768002/f68d6094f97a/nanomaterials-15-00111-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验