Suppr超能文献

通过等离子体纳米线二聚体光学天线增强单层MoS的共振光致发光

Resonance Photoluminescence Enhancement of Monolayer MoS via a Plasmonic Nanowire Dimer Optical Antenna.

作者信息

You Qingzhang, Li Ze, Li Yang, Qiu Lilong, Bi Xinxin, Zhang Lisheng, Zhang Duan, Fang Yan, Wang Peijie

机构信息

The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China.

Elementary Educational College, Capital Normal University, Beijing 100048, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2022 May 16. doi: 10.1021/acsami.2c02684.

Abstract

Two-dimensional transition-metal dichalcogenides (TMDs) such as monolayer MoS exhibit remarkable optical properties. However, the intrinsic absorption and emission rates of MoS are very low, thus severely hindering its application in electronics and photonics. Combining MoS with a plasmonic optical antenna is an alternative solution to enhance the emission rates of the 2D semiconductor, and this can drastically increase the photoresponsivity of the corresponding photodetector. Herein, we have constructed a plasmonic gap cavity of a nanowire dimer (NWD) system as an optical antenna to brighten the emission of MoS off the hot spot. Different from the conventional enhancement concept which occurred the plasmonic hot spot, the light emission the nanogap hot spot was thoroughly investigated. We demonstrate that this new plasmonic optical nanostructure leads to a strong enhancement due to the Purcell effect. The NWD optical antenna can trap light to the near field through a high-efficiency plasmonic gap mode (PGM); then the PL emission was enhanced drastically up to 14.5-fold due to the resonance of the plasmonic gap mode (PGM) in the NWD with the excitonic band of monolayer MoS. Theoretical simulations reveal that this NWD can alter the efficiency of convergence and excitation, which was consistent with our experimental results. This study can provide a pathway toward enhancing and controlling PGM-enhanced light emission of TMD materials beyond the plasmonic hot spot.

摘要

二维过渡金属二硫属化物(TMDs),如单层MoS,具有显著的光学特性。然而,MoS的固有吸收和发射速率非常低,严重阻碍了其在电子学和光子学中的应用。将MoS与等离子体光学天线相结合是提高二维半导体发射速率的一种替代解决方案,这可以大幅提高相应光电探测器的光响应度。在此,我们构建了纳米线二聚体(NWD)系统的等离子体间隙腔作为光学天线,以增强MoS在热点处的发射。与发生在等离子体热点处的传统增强概念不同,我们对纳米间隙热点处的发光进行了深入研究。我们证明,由于珀塞尔效应,这种新型等离子体光学纳米结构导致了强烈的增强。NWD光学天线可以通过高效的等离子体间隙模式(PGM)将光捕获到近场;然后,由于NWD中的等离子体间隙模式(PGM)与单层MoS的激子带共振,PL发射大幅增强,提高了14.5倍。理论模拟表明,这种NWD可以改变收敛和激发效率,这与我们的实验结果一致。这项研究可以为增强和控制TMD材料在等离子体热点之外的PGM增强发光提供一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验