Suppr超能文献

基于尺度空间方法的高分辨率卫星影像中个体树木的自动检测。

Automatic Detection of Individual Trees from VHR Satellite Images Using Scale-Space Methods.

机构信息

Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 AE Enschede, The Netherlands.

CGI Nederland, 3068 AX Rotterdam, The Netherlands.

出版信息

Sensors (Basel). 2020 Dec 15;20(24):7194. doi: 10.3390/s20247194.

Abstract

This research investigates the use of scale-space theory to detect individual trees in orchards from very-high resolution (VHR) satellite images. Trees are characterized by blobs, for example, bell-shaped surfaces. Their modeling requires the identification of local maxima in Gaussian scale space, whereas location of the maxima in the scale direction provides information about the tree size. A two-step procedure relates the detected blobs to tree objects in the field. First, a Gaussian blob model identifies tree crowns in Gaussian scale space. Second, an improved tree crown model modifies this model in the scale direction. The procedures are tested on the following three representative cases: an area with vitellaria trees in Mali, an orchard with walnut trees in Iran, and one case with oil palm trees in Indonesia. The results show that the refined Gaussian blob model improves upon the traditional Gaussian blob model by effectively discriminating between false and correct detections and accurately identifying size and position of trees. A comparison with existing methods shows an improvement of 10-20% in true positive detections. We conclude that the presented two-step modeling procedure of tree crowns using Gaussian scale space is useful to automatically detect individual trees from VHR satellite images for at least three representative cases.

摘要

本研究利用尺度空间理论从超高分辨率(VHR)卫星图像中检测果园中的单棵树。树木的特征是斑点,例如钟形表面。它们的建模需要在高斯尺度空间中识别局部极大值,而极大值在尺度方向上的位置提供了有关树木大小的信息。两步程序将检测到的斑点与田间的树木对象相关联。首先,高斯斑点模型在高斯尺度空间中识别树冠。其次,改进的树冠模型在尺度方向上修改此模型。在以下三个具有代表性的案例中测试了这些程序:马里的 Vitellaria 树区域、伊朗的核桃树果园和印度尼西亚的油棕树案例。结果表明,经过改进的高斯斑点模型通过有效区分错误和正确检测并准确识别树木的大小和位置,提高了传统的高斯斑点模型的性能。与现有方法的比较表明,真实阳性检测的改进率为 10-20%。我们得出的结论是,使用高斯尺度空间的树冠两步建模程序至少对于三个具有代表性的案例,可用于自动从 VHR 卫星图像中检测单棵树。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1206/7765503/e7e408283eaf/sensors-20-07194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验