Suppr超能文献

围术期麻醉中的多目标优化挑战:综述

Multiobjective optimization challenges in perioperative anesthesia: A review.

机构信息

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL.

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL.

出版信息

Surgery. 2021 Jul;170(1):320-324. doi: 10.1016/j.surg.2020.11.005. Epub 2020 Dec 14.

Abstract

Physicians use perioperative decision-support tools to mitigate risks and maximize benefits to achieve the most successful outcome for patients. Contemporary risk-assessment practices augment surgeons' judgement and experience with decision-support algorithms driven by big data and machine learning. These algorithms accurately assess risk for a wide range of postoperative complications by parsing large datasets and performing complex calculations that would be cumbersome for busy clinicians. Even with these advancements, large gaps in perioperative risk assessment remain; decision-support algorithms often cannot account for risk-reduction therapies applied during a patient's perioperative course and do not quantify tradeoffs between competing goals of care (eg, balancing postoperative pain control with the risk of respiratory depression or balancing intraoperative volume resuscitation with the risk for complications from pulmonary edema). Multiobjective optimization solutions have been applied to similar problems successfully but have not yet been applied to perioperative decision support. Given the large volume of data available via electronic medical records, including intraoperative data, it is now feasible to successfully apply multiobjective optimization in perioperative care. Clinical application of multiobjective optimization would require semiautomated pipelines for analytics and reporting model outputs and a careful development and validation process. Under these circumstances, multiobjective optimization has the potential to support personalized, patient-centered, shared decision-making with precision and balance.

摘要

医生使用围手术期决策支持工具来降低风险并最大限度地提高收益,从而为患者实现最成功的结果。当代的风险评估实践通过大数据和机器学习驱动的决策支持算法来增强外科医生的判断和经验。这些算法通过解析大型数据集并进行复杂的计算,准确地评估了广泛的术后并发症风险,这些计算对于忙碌的临床医生来说非常繁琐。即使有了这些进步,围手术期风险评估仍然存在很大差距;决策支持算法通常无法考虑到患者围手术期过程中应用的降低风险治疗方法,也无法量化护理目标之间的权衡(例如,平衡术后疼痛控制与呼吸抑制风险或平衡术中容量复苏与肺水肿并发症风险)。多目标优化解决方案已成功应用于类似问题,但尚未应用于围手术期决策支持。鉴于通过电子病历可获得大量数据,包括术中数据,现在可以成功地将多目标优化应用于围手术期护理。多目标优化的临床应用需要用于分析和报告模型输出的半自动分析管道,以及仔细的开发和验证过程。在这种情况下,多目标优化有可能以精确和平衡的方式支持个性化、以患者为中心的共同决策。

相似文献

4
Decision analysis and reinforcement learning in surgical decision-making.手术决策中的决策分析和强化学习。
Surgery. 2020 Aug;168(2):253-266. doi: 10.1016/j.surg.2020.04.049. Epub 2020 Jun 13.
5
Who is a high-risk surgical patient?高危手术患者指的是哪些人?
Curr Opin Crit Care. 2018 Dec;24(6):547-553. doi: 10.1097/MCC.0000000000000556.
7
Perioperative management of obese patient.肥胖患者的围手术期管理。
Curr Opin Crit Care. 2018 Dec;24(6):560-567. doi: 10.1097/MCC.0000000000000555.
8
Risk management frameworks for human health and environmental risks.人类健康与环境风险的风险管理框架。
J Toxicol Environ Health B Crit Rev. 2003 Nov-Dec;6(6):569-720. doi: 10.1080/10937400390208608.
10
Reinforcement learning in surgery.手术中的强化学习。
Surgery. 2021 Jul;170(1):329-332. doi: 10.1016/j.surg.2020.11.040. Epub 2021 Jan 9.

本文引用的文献

6
Perioperative Fluid Therapy for Major Surgery.大手术的围手术期液体治疗
Anesthesiology. 2019 May;130(5):825-832. doi: 10.1097/ALN.0000000000002603.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验