School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia.
J Biol Chem. 2021 Jan-Jun;296:100192. doi: 10.1074/jbc.RA120.015995. Epub 2020 Dec 20.
Histone methylation is central to the regulation of eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a system of four methyltransferases (Set1p, Set2p, Set5p, and Dot1p) and four demethylases (Jhd1p, Jhd2p, Rph1p, and Gis1p). While the histone targets for these enzymes are well characterized, the connection of the enzymes with the intracellular signaling network and thus their regulation is poorly understood; this also applies to all other eukaryotes. Here we report the detailed characterization of the eight S. cerevisiae enzymes and show that they carry a total of 75 phosphorylation sites, 92 acetylation sites, and two ubiquitination sites. All enzymes are subject to phosphorylation, although demethylases Jhd1p and Jhd2p contained one and five sites respectively, whereas other enzymes carried 14 to 36 sites. Phosphorylation was absent or underrepresented on catalytic and other domains but strongly enriched for regions of disorder on methyltransferases, suggesting a role in the modulation of protein-protein interactions. Through mutagenesis studies, we show that phosphosites within the acidic and disordered N-terminus of Set2p affect H3K36 methylation levels in vivo, illustrating the functional importance of such sites. While most kinases upstream of the yeast histone methylation enzymes remain unknown, we model the possible connections between the cellular signaling network and the histone-based gene regulatory system and propose an integrated regulatory structure. Our results provide a foundation for future, detailed exploration of the role of specific kinases and phosphosites in the regulation of histone methylation.
组蛋白甲基化是真核转录调控的核心。在酿酒酵母中,它由四种甲基转移酶(Set1p、Set2p、Set5p 和 Dot1p)和四种去甲基化酶(Jhd1p、Jhd2p、Rph1p 和 Gis1p)控制。虽然这些酶的组蛋白靶标已经得到很好的描述,但它们与细胞内信号网络的连接及其调节机制仍知之甚少;这也适用于所有其他真核生物。在这里,我们详细描述了八种酿酒酵母酶的特性,并表明它们总共携带 75 个磷酸化位点、92 个乙酰化位点和两个泛素化位点。所有酶都受到磷酸化的影响,尽管去甲基化酶 Jhd1p 和 Jhd2p 分别含有一个和五个位点,而其他酶则携带 14 到 36 个位点。磷酸化在催化和其他结构域上不存在或代表性不足,但在甲基转移酶的无序区域强烈富集,表明其在调节蛋白-蛋白相互作用中起作用。通过突变研究,我们表明 Set2p 酸性和无序 N 端的磷酸化位点会影响体内 H3K36 甲基化水平,说明了这些位点的功能重要性。虽然酵母组蛋白甲基化酶上游的大多数激酶仍然未知,但我们模拟了细胞信号网络和基于组蛋白的基因调控系统之间的可能连接,并提出了一个综合的调节结构。我们的研究结果为进一步详细探索特定激酶和磷酸化位点在组蛋白甲基化调节中的作用提供了基础。