Suppr超能文献

深入且多维地探索 budding yeast 磷酸化蛋白质组。

In-depth and 3-dimensional exploration of the budding yeast phosphoproteome.

机构信息

Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.

Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.

出版信息

EMBO Rep. 2021 Feb 3;22(2):e51121. doi: 10.15252/embr.202051121. Epub 2021 Jan 25.

Abstract

Phosphorylation is one of the most dynamic and widespread post-translational modifications regulating virtually every aspect of eukaryotic cell biology. Here, we assemble a dataset from 75 independent phosphoproteomic experiments performed in our laboratory using Saccharomyces cerevisiae. We report 30,902 phosphosites identified from cells cultured in a range of DNA damage conditions and/or arrested in distinct cell cycle stages. To generate a comprehensive resource for the budding yeast community, we aggregate our dataset with the Saccharomyces Genome Database and another recently published study, resulting in over 46,000 budding yeast phosphosites. With the goal of enhancing the identification of functional phosphorylation events, we perform computational positioning of phosphorylation sites on available 3D protein structures and systematically identify events predicted to regulate protein complex architecture. Results reveal hundreds of phosphorylation sites mapping to or near protein interaction interfaces, many of which result in steric or electrostatic "clashes" predicted to disrupt the interaction. With the advancement of Cryo-EM and the increasing number of available structures, our approach should help drive the functional and spatial exploration of the phosphoproteome.

摘要

磷酸化是最具动态性和广泛性的翻译后修饰之一,调节真核细胞生物学的几乎所有方面。在这里,我们汇集了来自我们实验室在酿酒酵母中进行的 75 个独立磷酸蛋白质组学实验的数据。我们报告了在多种 DNA 损伤条件下培养的细胞和/或在不同细胞周期阶段被阻断的细胞中鉴定出的 30902 个磷酸化位点。为了为 budding yeast 社区生成一个全面的资源,我们将我们的数据集与酿酒酵母基因组数据库和另一个最近发表的研究进行了汇总,结果得到了超过 46000 个 budding yeast 磷酸化位点。为了增强对功能磷酸化事件的识别,我们对可用的 3D 蛋白质结构上的磷酸化位点进行计算定位,并系统地识别预测调节蛋白质复合物结构的事件。结果揭示了数百个映射到或接近蛋白质相互作用界面的磷酸化位点,其中许多导致空间或静电“冲突”,预测会破坏相互作用。随着 Cryo-EM 的进步和越来越多的结构可用,我们的方法应该有助于推动磷酸蛋白质组的功能和空间探索。

相似文献

6
YETI: Yeast Exploration Tool Integrator.YETI:酵母探索工具整合器。
Bioinformatics. 2004 Jan 22;20(2):284-5. doi: 10.1093/bioinformatics/btg408.
7
Evaluation and properties of the budding yeast phosphoproteome.评估和酵母磷酸化蛋白质组的性质。
Mol Cell Proteomics. 2012 Jun;11(6):M111.009555. doi: 10.1074/mcp.M111.009555. Epub 2012 Jan 27.
10
The regulatory landscape of the yeast phosphoproteome.酵母磷酸化组的调控格局。
Nat Struct Mol Biol. 2023 Nov;30(11):1761-1773. doi: 10.1038/s41594-023-01115-3. Epub 2023 Oct 16.

引用本文的文献

本文引用的文献

1
From yeast to humans: Understanding the biology of DNA Damage Response (DDR) kinases.从酵母到人类:了解DNA损伤反应(DDR)激酶的生物学特性
Genet Mol Biol. 2019 Dec 13;43(1 suppl 1):e20190071. doi: 10.1590/1678-4685-GMB-2019-0071. eCollection 2019.
2
The functional landscape of the human phosphoproteome.人类磷酸化蛋白质组的功能景观。
Nat Biotechnol. 2020 Mar;38(3):365-373. doi: 10.1038/s41587-019-0344-3. Epub 2019 Dec 9.
3
Multilayered Control of Protein Turnover by TORC1 and Atg1.TORC1 和 Atg1 对蛋白质周转的多层次控制
Cell Rep. 2019 Sep 24;28(13):3486-3496.e6. doi: 10.1016/j.celrep.2019.08.069.
6
Illuminating the dark phosphoproteome.照亮黑暗的磷酸化蛋白质组。
Sci Signal. 2019 Jan 22;12(565):eaau8645. doi: 10.1126/scisignal.aau8645.
9
UniProt: a worldwide hub of protein knowledge.UniProt:蛋白质知识的全球枢纽。
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验