Suppr超能文献

光栅耦合干涉测量法揭示了 Ni 离子与基因工程蛋白层的结合动力学和亲和力。

Grating-coupled interferometry reveals binding kinetics and affinities of Ni ions to genetically engineered protein layers.

机构信息

Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, Veszprém, Hungary.

Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary.

出版信息

Sci Rep. 2020 Dec 17;10(1):22253. doi: 10.1038/s41598-020-79226-w.

Abstract

Reliable measurement of the binding kinetics of low molecular weight analytes to their targets is still a challenging task. Often, the introduction of labels is simply impossible in such measurements, and the application of label-free methods is the only reliable choice. By measuring the binding kinetics of Ni(II) ions to genetically modified flagellin layers, we demonstrate that: (1) Grating-Coupled Interferometry (GCI) is well suited to resolve the binding of ions, even at very low protein immobilization levels; (2) it supplies high quality kinetic data from which the number and strength of available binding sites can be determined, and (3) the rate constants of the binding events can also be obtained with high accuracy. Experiments were performed using a flagellin variant incorporating the C-terminal domain of the nickel-responsive transcription factor NikR. GCI results were compared to affinity data from titration calorimetry. We found that besides the low-affinity binding sites characterized by a micromolar dissociation constant (K), tetrameric FliC-NikR molecules possess high-affinity binding sites with K values in the nanomolar range. GCI enabled us to obtain real-time kinetic data for the specific binding of an analyte with molar mass as low as 59 Da, even at signals lower than 1 pg/mm.

摘要

可靠地测量低分子量分析物与其靶标的结合动力学仍然是一项具有挑战性的任务。在这些测量中,通常根本不可能引入标签,而使用无标记方法是唯一可靠的选择。通过测量 Ni(II)离子与遗传修饰的鞭毛蛋白层的结合动力学,我们证明:(1) 光栅耦合干涉法(GCI)非常适合解析离子的结合,即使在非常低的蛋白质固定化水平下也是如此;(2) 它提供高质量的动力学数据,可从中确定可用结合位点的数量和强度,以及 (3) 还可以高精度获得结合事件的速率常数。实验使用了一种鞭毛蛋白变体,其中包含镍响应转录因子 NikR 的 C 末端结构域。将 GCI 结果与滴定量热法的亲和力数据进行了比较。我们发现,除了具有微摩尔离解常数(K)的低亲和力结合位点外,四聚体 FliC-NikR 分子还具有具有纳摩尔范围内 K 值的高亲和力结合位点。GCI 使我们能够获得具有低至 59 Da 摩尔质量的分析物的实时结合动力学数据,即使在低于 1 pg/mm 的信号下也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9fb/7746762/6b602dcbd9a5/41598_2020_79226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验