Suppr超能文献

大规模证据表明,多年冻土融化后微生物会做出响应并释放相关碳。

Large-scale evidence for microbial response and associated carbon release after permafrost thaw.

机构信息

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.

出版信息

Glob Chang Biol. 2021 Jul;27(14):3218-3229. doi: 10.1111/gcb.15487. Epub 2021 Jan 21.

Abstract

Permafrost thaw could trigger the release of greenhouse gases through microbial decomposition of the large quantities of carbon (C) stored within frozen soils. However, accurate evaluation of soil C emissions from thawing permafrost is still a big challenge, partly due to our inadequate understanding about the response of microbial communities and their linkage with soil C release upon permafrost thaw. Based on a large-scale permafrost sampling across 24 sites on the Tibetan Plateau, we employed meta-genomic technologies (GeoChip and Illumina MiSeq sequencing) to explore the impacts of permafrost thaw (permafrost samples were incubated for 11 days at 5°C) on microbial taxonomic and functional communities, and then conducted a laboratory incubation to investigate the linkage of microbial taxonomic and functional diversity with soil C release after permafrost thaw. We found that bacterial and fungal α diversity decreased, but functional gene diversity and the normalized relative abundance of C degradation genes increased after permafrost thaw, reflecting the rapid microbial response to permafrost thaw. Moreover, both the microbial taxonomic and functional community structures differed between the thawed permafrost and formerly frozen soils. Furthermore, soil C release rate over five month incubation was associated with microbial functional diversity and C degradation gene abundances. By contrast, neither microbial taxonomic diversity nor community structure exhibited any significant effects on soil C release over the incubation period. These findings demonstrate that permafrost thaw could accelerate C emissions by altering the function potentials of microbial communities rather than taxonomic diversity, highlighting the crucial role of microbial functional genes in mediating the responses of permafrost C cycle to climate warming.

摘要

永冻土融化会通过微生物对大量储存在冻土中的碳(C)的分解,触发温室气体的释放。然而,准确评估永冻土融化引起的土壤 C 排放仍然是一个巨大的挑战,部分原因是我们对微生物群落的响应及其与永冻土融化后土壤 C 释放之间的联系的理解不足。基于对青藏高原 24 个地点的大规模永冻土采样,我们采用宏基因组技术(GeoChip 和 Illumina MiSeq 测序)来探索永冻土融化(将永冻土样品在 5°C 下孵育 11 天)对微生物分类和功能群落的影响,然后进行实验室孵育,以研究微生物分类和功能多样性与永冻土融化后土壤 C 释放之间的联系。我们发现,细菌和真菌的 α多样性下降,但功能基因多样性和 C 降解基因的归一化相对丰度增加,这反映了微生物对永冻土融化的快速响应。此外,解冻后的永冻土和以前的冻土之间的微生物分类和功能群落结构也存在差异。此外,在五个月的孵育过程中,土壤 C 释放速率与微生物功能多样性和 C 降解基因丰度相关。相比之下,在孵育期间,微生物分类多样性或群落结构均未对土壤 C 释放产生任何显著影响。这些发现表明,永冻土融化可能会通过改变微生物群落的功能潜力而不是分类多样性来加速 C 排放,突出了微生物功能基因在介导永冻土 C 循环对气候变暖的响应方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验