Suppr超能文献

纳米纤维素增强羟基磷灰石纳米带膜作为一种干细胞多谱系分化平台,用于体外仿生构建活性 3D 骨样组织。

Nanocellulose-Reinforced Hydroxyapatite Nanobelt Membrane as a Stem Cell Multi-Lineage Differentiation Platform for Biomimetic Construction of Bioactive 3D Osteoid Tissue In Vitro.

机构信息

State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.

Institute of Life Science, Yinfeng Biological Group, Jinan, 250102, China.

出版信息

Adv Healthc Mater. 2021 Apr;10(8):e2001851. doi: 10.1002/adhm.202001851. Epub 2020 Dec 18.

Abstract

Severe bone defects, especially accompanied by vascular and peripheral nerve injuries, remain a massive challenge. Most studies related to bone tissue engineering have focused on osteogenic differentiation of mesenchymal stem cells (MSCs), and ignored the formation of blood vessels and nerves in the newly generated bone owing to the lack of proper materials and methodology for tuning stem cells differentiated into osteogenic, neuronal, and endothelial cells (ECs) in the same scaffold system. Herein, a nanocellulose-reinforced hybrid membrane with good mechanical properties and control over biodegradation by assembling ultralong hydroxyapatite nanobelts in a bacterial nanocellulose hydrogel is designed and synthesized. Osteogenic, neuronal cells are successfully differentiated on this hybrid membrane. Based on the multi-lineage differentiation property of the membrane, a bioactive 3D osteoid tissue (osteogenic, neural, and ECs) is mimetically constructed in vitro using layer-by-layer culture and integration. The bone regeneration ability of the as-prepared bioactive osteoid tissue is assessed in vivo via heterotopic osteogenesis experiments for eight weeks. The rapid new bone growth and formation of blood capillaries and nerve fibers prove that the hybrid membrane can be universally applied as a stem cell multi-lineage differentiation platform, which has significant applications in bone tissue engineering.

摘要

严重的骨缺损,特别是伴有血管和周围神经损伤的骨缺损,仍然是一个巨大的挑战。大多数与骨组织工程相关的研究都集中在间充质干细胞(MSCs)的成骨分化上,由于缺乏适当的材料和方法来调节干细胞向成骨细胞、神经元和内皮细胞(ECs)分化,因此忽略了新生成的骨中的血管和神经的形成。在此,通过在细菌纳米纤维素水凝胶中组装超长羟基磷灰石纳米带,设计并合成了一种具有良好机械性能和控制生物降解能力的纳米纤维素增强混合膜。在该混合膜上成功地分化出成骨细胞和神经元细胞。基于膜的多谱系分化特性,使用层层培养和整合技术,在体外模拟构建了具有生物活性的 3D 类骨组织(成骨细胞、神经细胞和 ECs)。通过 8 周的异位成骨实验评估了所制备的生物活性类骨组织的骨再生能力。快速的新骨生长和毛细血管及神经纤维的形成证明,该混合膜可普遍用作干细胞多谱系分化平台,在骨组织工程中有重要的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验