Wan Longbiao, Yao Xiaoyue, Pan Jiali, Xiang Ziyang, Fu Dongjie, Ye Qingsong, Wu Fei
Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China.
Front Bioeng Biotechnol. 2025 Mar 11;13:1514318. doi: 10.3389/fbioe.2025.1514318. eCollection 2025.
Bone tissue engineering has rapidly emerged as an ideal strategy to replace autologous bone grafts, establishing a comprehensive system centered on biomaterial scaffolds, seeding cells, bioactive factors, and biophysical stimulation, thus paving the way for new horizons in surgical bone regeneration. However, the scarcity of suitable materials poses a significant challenge in replicating the intricate multi-layered structure of natural bone tissue. Supramolecular peptide nanofiber hydrogels (SPNHs) have shown tremendous potential as novel biomaterials due to their excellent biocompatibility, biodegradability, tunable mechanical properties, and multifunctionality. Various supramolecular peptides can assemble into nanofiber hydrogels, while bioactive sequences and factors can be embedded through physical adsorption or covalent binding, endowing the hydrogels with diverse biochemical properties. Finally, this review explored the future challenges and prospects of SPNHs in bone tissue engineering, with the aim of providing insights for further advancements in this field.
骨组织工程已迅速成为替代自体骨移植的理想策略,建立了一个以生物材料支架、种子细胞、生物活性因子和生物物理刺激为核心的综合体系,从而为手术骨再生的新视野铺平了道路。然而,合适材料的稀缺在复制天然骨组织复杂的多层结构方面构成了重大挑战。超分子肽纳米纤维水凝胶(SPNHs)由于其优异的生物相容性、可生物降解性、可调机械性能和多功能性,已显示出作为新型生物材料的巨大潜力。各种超分子肽可以组装成纳米纤维水凝胶,而生物活性序列和因子可以通过物理吸附或共价结合嵌入,赋予水凝胶多样的生化特性。最后,本综述探讨了SPNHs在骨组织工程中的未来挑战和前景,旨在为该领域的进一步发展提供见解。