Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain.
School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5TG, U.K.
ACS Synth Biol. 2021 Jan 15;10(1):213-217. doi: 10.1021/acssynbio.0c00529. Epub 2020 Dec 18.
Genetically encoded logic gates, especially inverters-NOT gates-are the building blocks for designing circuits, engineering biosensors, or decision-making devices in synthetic biology. However, the repertoire of inverters readily available for different species is rather limited. In this work, a large whole of NOT gates that was shown to function previously in a specific strain of , was recreated as broad host range (BHR) collection of constructs assembled in low, medium, and high copy number plasmid backbones of the SEVA (Standard European Vector Architecture) collection. The input/output function of each of the gates was characterized and parametrized in the environmental bacterium and metabolic engineering chassis . Comparisons of the resulting fluorescence cytometry data with those published for the same gates in provided useful hints on the portability of the corresponding gates. The hereby described inverter package (20 different versions of 12 distinct gates) borne by BHR plasmids thus becomes a toolbox of choice for designing genetic circuitries in a variety of Gram-negative species other than
基因编码逻辑门,尤其是反相器-NOT 门,是设计电路、工程生物传感器或合成生物学中决策设备的基本构建块。然而,不同物种可用的反相器种类相当有限。在这项工作中,我们重新创建了一个广泛的 NOT 门集合,这些门之前在特定的 菌株中被证明具有功能,作为组装在 SEVA(标准欧洲载体架构)集合的低、中、高拷贝数质粒骨架中的广谱宿主范围(BHR)构建体集合。在环境细菌和代谢工程底盘 中,对每个门的输入/输出功能进行了表征和参数化。将荧光细胞术数据的结果与 中相同门的已发表数据进行比较,为相应门的可移植性提供了有用的提示。因此,由 BHR 质粒承载的这种反相器组件(20 种不同版本的 12 个不同门)成为了在除了 以外的多种革兰氏阴性物种中设计遗传电路的首选工具包。