Khedri Mohammad, Rezvantalab Sima, Maleki Reza, Rezaei Nima
Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Department of Chemical Engineering, Urmia University of Technology, Urmia, Iran.
J Biomol Struct Dyn. 2022 Jul;40(10):4409-4418. doi: 10.1080/07391102.2020.1857840. Epub 2020 Dec 18.
In this study, the effect of ligand binding position on the polymeric nanoparticles (NPs) is based on poly(lactic-co-glycolic acid) (PLGA) with two different polymer chain length at the atomistic level was presented. We explored the conjugation of riboflavin (RF) ligand from the end of the ribityl chain (N-10) to the polymer strands as well as from the amine group on the isoalloxazine head (N-3). The energy interactions for all samples revealed that the NPs containing ligands from N-10 positions have higher total attraction energies and lower stability in comparison with their peers conjugated from N-3. As NPs containing RF conjugated from N-3 exhibit the lower energy level with 20% and 10% of RF-containing composition for lower and higher. The introduction of RF from the N-10 position in any composition has increased the energy level of nanocarriers. The results of Gibb's free energy confirm the interatomic interaction energies trend where the lowest Gibbs free energy level for N-3 NPs occurs at 20 and 10% of RF-containing polymer content for PLGA10- and PLGA11- based NPs. Furthermore, with N-10 samples based on both polymers, non-targeted models form the stablest particles in each category. These findings are further confirmed with molecular docking analysis which revealed affinity energy of RF toward polymer chain from N-3 and N-10 are -981.57 kJ/mole and -298.23 kJ/mole, respectively. This in-silico study paves the new way for molecular engineering of the bio-responsive PLGA-PEG-RF micelles and can be used to nanoscale tunning of smart carriers used in cancer treatment.Communicated by Ramaswamy H. Sarma.
在本研究中,在原子水平上展示了配体结合位置对基于聚乳酸-乙醇酸共聚物(PLGA)且具有两种不同聚合物链长度的聚合物纳米颗粒(NPs)的影响。我们探究了核黄素(RF)配体从核糖醇链末端(N-10)连接到聚合物链以及从异咯嗪头部的胺基(N-3)连接到聚合物链的情况。所有样品的能量相互作用表明,与从N-3连接配体的纳米颗粒相比,含有来自N-10位置配体的纳米颗粒具有更高的总吸引能和更低的稳定性。因为含有从N-3连接RF的纳米颗粒在较低和较高的含RF组成为20%和10%时表现出较低的能量水平。在任何组成中从N-10位置引入RF都会提高纳米载体的能量水平。吉布斯自由能的结果证实了原子间相互作用能的趋势,即基于PLGA10和PLGA11的纳米颗粒在含RF聚合物含量为20%和10%时,N-3纳米颗粒的吉布斯自由能水平最低。此外,对于基于这两种聚合物的N-10样品,非靶向模型在每个类别中形成最稳定的颗粒。分子对接分析进一步证实了这些发现,该分析表明RF对来自N-3和N-10的聚合物链的亲和能分别为-981.57 kJ/摩尔和-298.23 kJ/摩尔。这项计算机模拟研究为生物响应性PLGA-PEG-RF胶束的分子工程开辟了新途径,可用于癌症治疗中智能载体的纳米级调节。由拉马斯瓦米·H·萨尔马传达。