Suppr超能文献

基于烧伤生成对抗网络的烧伤图像分割

Burn Images Segmentation Based on Burn-GAN.

作者信息

Dai Fei, Zhang Dengyi, Su Kehua, Xin Ning

机构信息

School of Computer Science, Wuhan University, Wuhan, China.

Institute of Communication and Navigation Satellite, China Academy of Space Technology, Beijing, China.

出版信息

J Burn Care Res. 2021 Aug 4;42(4):755-762. doi: 10.1093/jbcr/iraa208.

Abstract

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.

摘要

烧伤对人类来说是严重的问题。准确分割患者体表的烧伤创面可以提高%TBSA(烧伤总面积)的计算精度,这有助于确定治疗方案。近年来,深度学习方法已被用于自动分割创面。然而,由于收集相关图像作为训练数据存在困难,这些方法往往无法实现精细分割。本文提出了一种烧伤图像生成框架,用于自动生成带有注释的烧伤图像数据集。这些数据集可用于提高分割精度并节省注释时间。本文提出了一种先进的烧伤图像生成框架Burn-GAN。该框架由四个部分组成:基于主流Style-GAN网络生成烧伤创面;通过颜色调整无缝克隆(CASC)将创面与人体皮肤融合;在三维空间中模拟真实烧伤场景;通过三维和局部烧伤坐标变换获取带注释的数据集。使用该框架,可以获得各种各样的烧伤图像数据集。最后,使用精度、像素准确率(PA)和骰子系数(DC)等标准指标来评估该框架。通过使用带有R2正则化的非饱和损失(NSLR2)和CASC,分割网络取得了最佳结果。该框架的精度达到90.75%,PA达到96.88%,并将DC从84.5提高到89.3%。构建了一个烧伤数据生成框架来改进分割网络,与传统方法相比,该框架能够以更高的精度和更短的时间自动分割烧伤图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验