Suppr超能文献

深度学习算法在评估急性烧伤和手术需求方面的开发和评估。

Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery.

机构信息

Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Sci Rep. 2023 Jan 31;13(1):1794. doi: 10.1038/s41598-023-28164-4.

Abstract

Assessment of burn extent and depth are critical and require very specialized diagnosis. Automated image-based algorithms could assist in performing wound detection and classification. We aimed to develop two deep-learning algorithms that respectively identify burns, and classify whether they require surgery. An additional aim assessed the performances in different Fitzpatrick skin types. Annotated burn (n = 1105) and background (n = 536) images were collected. Using a commercially available platform for deep learning algorithms, two models were trained and validated on 70% of the images and tested on the remaining 30%. Accuracy was measured for each image using the percentage of wound area correctly identified and F1 scores for the wound identifier; and area under the receiver operating characteristic (AUC) curve, sensitivity, and specificity for the wound classifier. The wound identifier algorithm detected an average of 87.2% of the wound areas accurately in the test set. For the wound classifier algorithm, the AUC was 0.885. The wound identifier algorithm was more accurate in patients with darker skin types; the wound classifier was more accurate in patients with lighter skin types. To conclude, image-based algorithms can support the assessment of acute burns with relatively good accuracy although larger and different datasets are needed.

摘要

烧伤程度和深度的评估至关重要,需要非常专业的诊断。基于图像的自动算法可以帮助进行伤口检测和分类。我们旨在开发两种深度学习算法,分别识别烧伤,并分类是否需要手术。另一个目的是评估在不同 Fitzpatrick 皮肤类型中的表现。收集了标注的烧伤(n=1105)和背景(n=536)图像。使用商业上可用的深度学习算法平台,在 70%的图像上训练和验证了两个模型,并在其余 30%的图像上进行了测试。使用正确识别的伤口面积百分比和伤口识别器的 F1 分数以及接收器操作特性(ROC)曲线下的面积(AUC)、灵敏度和特异性来测量每个图像的准确性。伤口识别器算法在测试集中平均准确地检测到 87.2%的伤口区域。对于伤口分类器算法,AUC 为 0.885。在皮肤较深的患者中,伤口识别器算法更准确;在皮肤较浅的患者中,伤口分类器算法更准确。总之,基于图像的算法可以支持急性烧伤的评估,具有相对较高的准确性,但需要更大和不同的数据集。

相似文献

5
A deep learning model for burn depth classification using ultrasound imaging.
J Mech Behav Biomed Mater. 2022 Jan;125:104930. doi: 10.1016/j.jmbbm.2021.104930. Epub 2021 Oct 29.
6
Classification of burn injuries using near-infrared spectroscopy.
J Biomed Opt. 2006 Sep-Oct;11(5):054002. doi: 10.1117/1.2362722.
7
[Establishment and test results of an artificial intelligence burn depth recognition model based on convolutional neural network].
Zhonghua Shao Shang Za Zhi. 2020 Nov 20;36(11):1070-1074. doi: 10.3760/cma.j.cn501120-20190926-00385.
8
Application of multiple deep learning models for automatic burn wound assessment.
Burns. 2023 Aug;49(5):1039-1051. doi: 10.1016/j.burns.2022.07.006. Epub 2022 Jul 18.
9
[Meta-analysis on the diagnostic value of laser Doppler imaging for burn depth].
Zhonghua Shao Shang Za Zhi. 2017 May 20;33(5):301-308. doi: 10.3760/cma.j.issn.1009-2587.2017.05.009.
10
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
JAMA Netw Open. 2020 Oct 1;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779.

引用本文的文献

1
Top-k Bottom All but Loss Strategy for Medical Image Segmentation.
Diagnostics (Basel). 2025 Aug 29;15(17):2189. doi: 10.3390/diagnostics15172189.
4
Mobile applications for the assessment of paediatric burn injuries in the Pacific Islands: A Samoan perspective for global research engagement.
J Public Health Res. 2025 Feb 24;14(1):22799036251323408. doi: 10.1177/22799036251323408. eCollection 2025 Jan.
5
Review of machine learning for optical imaging of burn wound severity assessment.
J Biomed Opt. 2024 Feb;29(2):020901. doi: 10.1117/1.JBO.29.2.020901. Epub 2024 Feb 15.
7
Spatial attention-based residual network for human burn identification and classification.
Sci Rep. 2023 Aug 2;13(1):12516. doi: 10.1038/s41598-023-39618-0.

本文引用的文献

1
Artificial Intelligence for Healthcare in Africa.
Front Digit Health. 2020 Jul 7;2:6. doi: 10.3389/fdgth.2020.00006. eCollection 2020.
2
Burn Images Segmentation Based on Burn-GAN.
J Burn Care Res. 2021 Aug 4;42(4):755-762. doi: 10.1093/jbcr/iraa208.
3
Convolution neural network for effective burn region segmentation of color images.
Burns. 2021 Jun;47(4):854-862. doi: 10.1016/j.burns.2020.08.016. Epub 2020 Sep 12.
5
Palliation, end-of-life care and burns; concepts, decision-making and communication - A narrative review.
Afr J Emerg Med. 2020 Jun;10(2):95-98. doi: 10.1016/j.afjem.2020.01.003. Epub 2020 Feb 9.
6
BPBSAM: Body part-specific burn severity assessment model.
Burns. 2020 Sep;46(6):1407-1423. doi: 10.1016/j.burns.2020.03.007. Epub 2020 May 4.
7
Burn injury.
Nat Rev Dis Primers. 2020 Feb 13;6(1):11. doi: 10.1038/s41572-020-0145-5.
9
Feature Extraction Based Machine Learning for Human Burn Diagnosis From Burn Images.
IEEE J Transl Eng Health Med. 2019 Jul 18;7:1800507. doi: 10.1109/JTEHM.2019.2923628. eCollection 2019.
10
Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks.
J Burn Care Res. 2019 Oct 16;40(6):857-863. doi: 10.1093/jbcr/irz103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验