Suppr超能文献

基于深度学习的烧伤图像自动分割和烧伤深度诊断框架。

A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning.

机构信息

Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Zhejiang, China.

The People's Hospital of Jianggan District, Hangzhou, Zhejiang, China.

出版信息

Comput Math Methods Med. 2021 Apr 7;2021:5514224. doi: 10.1155/2021/5514224. eCollection 2021.

Abstract

Burn is a common traumatic disease with high morbidity and mortality. The treatment of burns requires accurate and reliable diagnosis of burn wounds and burn depth, which can save lives in some cases. However, due to the complexity of burn wounds, the early diagnosis of burns lacks accuracy and difference. Therefore, we use deep learning technology to automate and standardize burn diagnosis to reduce human errors and improve burn diagnosis. First, the burn dataset with detailed burn area segmentation and burn depth labelling is created. Then, an end-to-end framework based on deep learning method for advanced burn area segmentation and burn depth diagnosis is proposed. The framework is firstly used to segment the burn area in the burn images. On this basis, the calculation of the percentage of the burn area in the total body surface area (TBSA) can be realized by extending the network output structure and the labels of the burn dataset. Then, the framework is used to segment multiple burn depth areas. Finally, the network achieves the best result with IOU of 0.8467 for the segmentation of burn and no burn area. And for multiple burn depth areas segmentation, the best average IOU is 0.5144.

摘要

烧伤是一种常见的创伤性疾病,具有较高的发病率和死亡率。烧伤的治疗需要准确可靠地诊断烧伤创面和烧伤深度,在某些情况下可以挽救生命。然而,由于烧伤创面的复杂性,烧伤的早期诊断缺乏准确性和差异性。因此,我们使用深度学习技术实现烧伤诊断的自动化和标准化,以减少人为错误,提高烧伤诊断水平。首先,创建了具有详细烧伤面积分割和烧伤深度标记的烧伤数据集。然后,提出了一种基于深度学习方法的端到端框架,用于高级烧伤面积分割和烧伤深度诊断。该框架首先用于分割烧伤图像中的烧伤区域。在此基础上,通过扩展网络输出结构和烧伤数据集的标签,可以实现烧伤面积占体表面积(TBSA)百分比的计算。然后,该框架用于分割多个烧伤深度区域。最后,该网络在烧伤和非烧伤区域的分割上取得了 IOU 为 0.8467 的最佳结果。对于多个烧伤深度区域的分割,最佳平均 IOU 为 0.5144。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e749/8046560/3d561ffa71a1/CMMM2021-5514224.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验