Suppr超能文献

基于分区的默认模式网络的解剖建模。

Parcellation-based anatomic modeling of the default mode network.

机构信息

Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia.

出版信息

Brain Behav. 2021 Feb;11(2):e01976. doi: 10.1002/brb3.1976. Epub 2020 Dec 18.

Abstract

BACKGROUND

The default mode network (DMN) is an important mediator of passive states of mind. Multiple cortical areas, such as the anterior cingulate cortex, posterior cingulate cortex, and lateral parietal lobe, have been linked in this processing, though knowledge of network connectivity had limited tractographic specificity.

METHODS

Using resting-state fMRI studies related to the DMN, we generated an activation likelihood estimation (ALE). We built a tractographical model of this network based on the cortical parcellation scheme previously published under the Human Connectome Project. DSI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network.

RESULTS

Seventeen cortical regions were found to be part of the DMN: 10r, 31a, 31pd, 31pv, a24, d23ab, IP1, p32, POS1, POS2, RSC, PFm, PGi, PGs, s32, TPOJ3, and v23ab. These regions showed consistent interconnections between adjacent parcellations, and the cingulum was found to connect the anterior and posterior cingulate clusters within the network.

CONCLUSIONS

We present a preliminary anatomic model of the default mode network. Further studies may refine this model with the ultimate goal of clinical application.

摘要

背景

默认模式网络(DMN)是被动思维状态的重要中介。尽管网络连接的知识具有有限的轨迹特异性,但已有多个皮质区域,如前扣带皮层、后扣带皮层和外侧顶叶,与这一处理过程相关联。

方法

使用与 DMN 相关的静息态 fMRI 研究,我们生成了激活似然估计(ALE)。我们根据先前在人类连接组计划下发表的皮质分割方案,构建了该网络的轨迹模型。基于弥散张量成像(DTI)的纤维追踪技术用于确定构成网络的皮质分割之间的结构连接。

结果

发现 17 个皮质区域是 DMN 的一部分:10r、31a、31pd、31pv、a24、d23ab、IP1、p32、POS1、POS2、RSC、PFm、PGi、PGs、s32、TPOJ3 和 v23ab。这些区域显示出相邻分割之间的一致连接,并且扣带连接了网络内的前扣带和后扣带集群。

结论

我们提出了默认模式网络的初步解剖模型。进一步的研究可能会完善这个模型,最终目标是临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a17/7882165/a22c640abed0/BRB3-11-e01976-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验