Suppr超能文献

前列腺癌风险计算器应用程序在台湾人群队列中的应用:验证研究。

Prostate Cancer Risk Calculator Apps in a Taiwanese Population Cohort: Validation Study.

机构信息

Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.

School of Medicine, National Yang-Ming University, Taipei, Taiwan.

出版信息

J Med Internet Res. 2020 Dec 18;22(12):e16322. doi: 10.2196/16322.

Abstract

BACKGROUND

Mobile health apps have emerged as useful tools for patients and clinicians alike, sharing health information or assisting in clinical decision-making. Prostate cancer (PCa) risk calculator mobile apps have been introduced to assess risks of PCa and high-grade PCa (Gleason score ≥7). The Rotterdam Prostate Cancer Risk Calculator and Coral-Prostate Cancer Nomogram Calculator apps were developed from the 2 most-studied PCa risk calculators, the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the North American Prostate Cancer Prevention Trial (PCPT) risk calculators, respectively. A systematic review has indicated that the Rotterdam and Coral apps perform best during the prebiopsy stage. However, the epidemiology of PCa varies among different populations, and therefore, the applicability of these apps in a Taiwanese population needs to be evaluated. This study is the first to validate the PCa risk calculator apps with both biopsy and prostatectomy cohorts in Taiwan.

OBJECTIVE

The study's objective is to validate the PCa risk calculator apps using a Taiwanese cohort of patients. Additionally, we aim to utilize postprostatectomy pathology outcomes to assess the accuracy of both apps with regard to high-grade PCa.

METHODS

All male patients who had undergone transrectal ultrasound prostate biopsies in a single Taiwanese tertiary medical center from 2012 to 2018 were identified retrospectively. The probabilities of PCa and high-grade PCa were calculated utilizing the Rotterdam and Coral apps, and compared with biopsy and prostatectomy results. Calibration was graphically evaluated with the Hosmer-Lemeshow goodness-of-fit test. Discrimination was analyzed utilizing the area under the receiver operating characteristic curve (AUC). Decision curve analysis was performed for clinical utility.

RESULTS

Of 1134 patients, 246 (21.7%) were diagnosed with PCa; of these 246 patients, 155 (63%) had high-grade PCa, according to the biopsy results. After confirmation with prostatectomy pathological outcomes, 47.2% (25/53) of patients were upgraded to high-grade PCa, and 1.2% (1/84) of patients were downgraded to low-grade PCa. Only the Rotterdam app demonstrated good calibration for detecting high-grade PCa in the biopsy cohort. The discriminative ability for both PCa (AUC: 0.779 vs 0.687; DeLong's method: P<.001) and high-grade PCa (AUC: 0.862 vs 0.758; P<.001) was significantly better for the Rotterdam app. In the prostatectomy cohort, there was no significant difference between both apps (AUC: 0.857 vs 0.777; P=.128).

CONCLUSIONS

The Rotterdam and Coral apps can be applied to the Taiwanese cohort with accuracy. The Rotterdam app outperformed the Coral app in the prediction of PCa and high-grade PCa. Despite the small size of the prostatectomy cohort, both apps, to some extent, demonstrated the predictive capacity for true high-grade PCa, confirmed by the whole prostate specimen. Following our external validation, the Rotterdam app might be a good alternative to help detect PCa and high-grade PCa for Taiwanese men.

摘要

背景

移动健康应用程序已成为患者和临床医生的有用工具,用于共享健康信息或协助临床决策。前列腺癌(PCa)风险计算器移动应用程序已被引入,以评估 PCa 和高级别 PCa(Gleason 评分≥7)的风险。鹿特丹前列腺癌风险计算器和 Coral-Prostate Cancer Nomogram 计算器应用程序分别是从研究最多的 2 个 PCa 风险计算器欧洲随机前列腺癌筛查研究(ERSPC)和北美前列腺癌预防试验(PCPT)风险计算器开发的。系统评价表明,鹿特丹和珊瑚应用程序在活检前阶段表现最佳。然而,PCa 的流行病学在不同人群中存在差异,因此需要评估这些应用程序在台湾人群中的适用性。本研究首次使用台湾患者的活检和前列腺切除术队列验证了 PCa 风险计算器应用程序。

目的

本研究的目的是使用台湾患者队列验证 PCa 风险计算器应用程序。此外,我们旨在利用前列腺切除术后的病理结果来评估这两个应用程序在高级别 PCa 方面的准确性。

方法

回顾性地从 2012 年至 2018 年,在一家台湾的三级医疗中心对所有接受经直肠超声前列腺活检的男性患者进行了识别。使用 Rotterdam 和 Coral 应用程序计算 PCa 和高级别 PCa 的概率,并与活检和前列腺切除术结果进行比较。使用 Hosmer-Lemeshow 拟合优度检验进行图形评估校准。利用受试者工作特征曲线下面积(AUC)分析判别能力。进行决策曲线分析以评估临床实用性。

结果

在 1134 名患者中,246 名(21.7%)被诊断为 PCa;根据活检结果,这 246 名患者中 155 名(63%)患有高级别 PCa。在确认前列腺切除术病理结果后,47.2%(25/53)的患者被升级为高级别 PCa,1.2%(1/84)的患者被降级为低级别 PCa。只有 Rotterdam 应用程序在活检队列中显示出良好的高级别 PCa 检测校准。对于 PCa(AUC:0.779 与 0.687;DeLong 方法:P<.001)和高级别 PCa(AUC:0.862 与 0.758;P<.001),Rotterdam 应用程序的鉴别能力均显著提高。在前列腺切除术队列中,两个应用程序之间没有显著差异(AUC:0.857 与 0.777;P=.128)。

结论

Rotterdam 和 Coral 应用程序可以在台湾队列中准确应用。Rotterdam 应用程序在预测 PCa 和高级别 PCa 方面优于 Coral 应用程序。尽管前列腺切除术队列规模较小,但这两个应用程序在一定程度上展示了对整个前列腺标本中真正高级别 PCa 的预测能力。经过我们的外部验证,Rotterdam 应用程序可能是帮助检测台湾男性 PCa 和高级别 PCa 的一个很好的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1562/7775818/59183b017232/jmir_v22i12e16322_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验