Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
Department of Computer Science, Yonsei University, Seoul, Korea.
J Alzheimers Dis. 2021;79(2):483-491. doi: 10.3233/JAD-200734.
Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients.
To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles.
A total of 407 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of <192 pg/mL was applied to define CSF Aβ42 status. After feature selection, random forest with subsampling methods were utilized to develop three models with which to predict CSF Aβ42: 1) a radiomics model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles. The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also developed and validated.
The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set.
Radiomics models from MRI can help predict CSF Aβ42 status in MCI patients and potentially triage the patients for invasive and costly Aβ tests.
非侵入性鉴定淀粉样蛋白-β(Aβ)对于更好地管理轻度认知障碍(MCI)患者具有重要意义。
研究 MCI 患者海马区的放射组学特征是否能改善与临床特征相结合时对脑脊液(CSF)Aβ42 状态的预测。
从阿尔茨海默病神经影像学倡议中总共分配了 407 名 MCI 患者到训练集(n=324)和测试集(n=83)。从磁共振成像(MRI)中提取双侧海马区的放射组学特征(n=214)。应用 <192pg/mL 的截止值来定义 CSF Aβ42 状态。在特征选择后,利用随机森林和抽样方法建立了三个预测 CSF Aβ42 的模型:1)放射组学模型;2)基于临床特征的临床模型;3)基于放射组学和临床特征的联合模型。在测试集中验证了这些模型的预测性能。还开发并验证了一个基于海马体积的预测模型。
表现最佳的放射组学模型在测试集中的曲线下面积(AUC)为 0.674。表现最佳的临床模型在测试集中的 AUC 为 0.758。表现最佳的联合模型在测试集中的 AUC 为 0.823。海马体积模型的表现较低,在测试集中的 AUC 为 0.543。
MRI 的放射组学模型有助于预测 MCI 患者的 CSF Aβ42 状态,并可能对需要进行侵入性和昂贵的 Aβ 检测的患者进行分类。