Suppr超能文献

使用放射组学方法预测轻度认知障碍患者的淀粉样蛋白阳性。

Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach.

机构信息

Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea.

Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea.

出版信息

Sci Rep. 2021 Mar 26;11(1):6954. doi: 10.1038/s41598-021-86114-4.

Abstract

Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71-0.74, AUC for validation = 0.68-0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.

摘要

预测轻度认知障碍(MCI)患者的淀粉样蛋白阳性情况至关重要。在本研究中,我们使用放射组学方法通过结构 MRI 预测淀粉样蛋白阳性。从 440 名 MCI 患者的 MR 图像(包括 T1、T2 FLAIR 和 DTI 序列)中,我们提取了由直方图和纹理特征组成的放射组学特征。这些特征单独使用或与基线非成像预测因子(如年龄、性别和 ApoE 基因型)结合使用,以预测淀粉样蛋白阳性。我们使用正则化回归方法进行特征选择和预测。基线非成像模型的性能处于中等水平(AUC=0.71)。在单一 MR 序列模型中,T1 和 T2 FLAIR 放射组学模型在预测淀粉样蛋白阳性方面也表现出中等性能(测试 AUC=0.71-0.74,验证 AUC=0.68-0.70)。当 T1 和 T2 FLAIR 放射组学特征结合时,测试 AUC 为 0.75,验证 AUC 为 0.72(p 与基线模型相比 < 0.001)。当基线特征与 T1 和 T2 FLAIR 放射组学模型结合时,模型表现最佳(测试 AUC=0.79,验证 AUC=0.76),明显优于基线模型(p<0.001)和 T1+T2 FLAIR 放射组学模型(p<0.001)。总之,放射组学特征对淀粉样蛋白阳性具有预测价值。它可以与其他预测特征结合使用,并且可能会提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bab/7997887/23ea1d8243a6/41598_2021_86114_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验