Hossain Iqubal, Husna Asmaul, Chaemchuen Somboon, Verpoort Francis, Kim Tae-Hyun
Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea.
Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea.
ACS Appl Mater Interfaces. 2020 Dec 30;12(52):57916-57931. doi: 10.1021/acsami.0c18415. Epub 2020 Dec 18.
Mixed-matrix membranes (MMMs) with an ideal polymer-filler interface and high gas separation performance are very challenging to fabricate because of incompatibility between the fillers and the polymer matrix. This work provides a simple technique to prepare a series of cross-linked MMMs (xMMM@) by covalently attaching UiO-66-NB metal-organic frameworks (MOFs) within the PEG/PPG-PDMS copolymer matrix via ring-opening metathesis polymerization and in situ membrane casting. The norbornene-modified MOF (UiO-66-NB) is successfully copolymerized and dispersed homogeneously into a PEG/PPG-PDMS matrix because of very fast polymer formation and strong covalent interaction between MOFs and the rubbery polymer. A significant improvement in gas permeability is achieved in membranes up to a 5 wt % MOF loading compared to the pristine polymer membrane without affecting selectivity. The CO/N separation performance of xMMM@1, xMMM@3, and xMMM@5 with 1, 3, and 5 wt % MOF loading, respectively, surpassed Robeson's 2008 upper bound. In addition, the best performing membrane, xMMM@3 (P = 585 Barrer and CO/N ∼53), approaches the 2019 upper bound, indicating that the cross-linked MMMs (xMMM@) are very promising for CO separation from flue gas. The experimental results of our study were evaluated and are supported by theoretical data obtained using the Maxwell model for MMMs. Moreover, the developed MMMs, xMMM@s, displayed outstanding antiplasticization performance at pressures of up to 25 atm and very stable antiaging performance for up to 11 months with good temperature switching behaviors.
由于填料与聚合物基体之间的不相容性,制备具有理想聚合物-填料界面和高气体分离性能的混合基质膜(MMM)极具挑战性。本工作提供了一种简单的技术,通过开环易位聚合和原位膜浇铸,将UiO-66-NB金属有机框架(MOF)共价连接在PEG/PPG-PDMS共聚物基体内,制备了一系列交联混合基质膜(xMMM@)。由于聚合物形成速度非常快以及MOF与橡胶状聚合物之间存在强共价相互作用,降冰片烯改性的MOF(UiO-66-NB)成功地共聚并均匀分散到PEG/PPG-PDMS基体中。与原始聚合物膜相比,在MOF负载量高达5 wt%的膜中,气体渗透率有显著提高,且不影响选择性。MOF负载量分别为1 wt%、3 wt%和5 wt%的xMMM@1、xMMM@3和xMMM@5的CO/N2分离性能超过了2008年的Robeson上限。此外,性能最佳的膜xMMM@3(P = 585 Barrer,CO/N2 ∼53)接近2019年的上限,表明交联混合基质膜(xMMM@)在从烟道气中分离CO方面非常有前景。我们研究的实验结果得到了使用MMM的Maxwell模型获得的理论数据的评估和支持。此外,所开发的MMM,即xMMM@,在高达25 atm的压力下表现出出色的抗增塑性能,在长达11个月的时间内具有非常稳定的抗老化性能,并且具有良好的温度切换行为。