Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India.
Nat Commun. 2023 Apr 18;14(1):2212. doi: 10.1038/s41467-023-37739-8.
Transport diffusivity of molecules in a porous solid is constricted by the rate at which molecules move from one pore to the other, along the concentration gradient, i.e. by following Fickian diffusion. In heterogeneous porous materials, i.e. in the presence of pores of different sizes and chemical environments, diffusion rate and directionality remain tricky to estimate and adjust. In such a porous system, we have realized that molecular diffusion direction can be orthogonal to the concentration gradient. To experimentally determine this complex diffusion rate dependency and get insight of the microscopic diffusion pathway, we have designed a model nanoporous structure, metal-organic framework (MOF). In this model two chemically and geometrically distinct pore windows are spatially oriented by an epitaxial, layer-by-layer growth method. The specific design of the nanoporous channels and quantitative mass uptake rate measurements have indicated that the mass uptake is governed by the interpore diffusion along the direction orthogonal to the concentration gradient. This revelation allows chemically carving the nanopores, and accelerating the interpore diffusion and kinetic diffusion selectivity.
分子在多孔固体中的传输扩散受到分子从一个孔移动到另一个孔的速率限制,这是沿着浓度梯度进行的,即遵循菲克扩散。在非均相多孔材料中,即存在不同大小和化学环境的孔时,扩散速率和方向性仍然难以估计和调整。在这样的多孔系统中,我们已经意识到分子扩散方向可以与浓度梯度正交。为了实验确定这种复杂的扩散速率依赖性并深入了解微观扩散途径,我们设计了一种模型纳米多孔结构,即金属-有机骨架(MOF)。在这个模型中,两个化学和几何上不同的孔窗通过外延的层层生长方法在空间上定向。纳米多孔通道的特定设计和定量质量吸收速率测量表明,质量吸收受沿浓度梯度正交方向的孔间扩散控制。这一发现允许对纳米孔进行化学刻蚀,并加速孔间扩散和动力学扩散选择性。