Li Gongyang, Liu Zhi, Shi Ran, Hu Zheng, Wei Weijie, Wu Yong, Huang Mengke, Ling Haibin
IEEE Trans Image Process. 2021;30:1461-1475. doi: 10.1109/TIP.2020.3044440. Epub 2020 Dec 31.
As a natural way for human-computer interaction, fixation provides a promising solution for interactive image segmentation. In this paper, we focus on Personal Fixations-based Object Segmentation (PFOS) to address issues in previous studies, such as the lack of appropriate dataset and the ambiguity in fixations-based interaction. In particular, we first construct a new PFOS dataset by carefully collecting pixel-level binary annotation data over an existing fixation prediction dataset, such dataset is expected to greatly facilitate the study along the line. Then, considering characteristics of personal fixations, we propose a novel network based on Object Localization and Boundary Preservation (OLBP) to segment the gazed objects. Specifically, the OLBP network utilizes an Object Localization Module (OLM) to analyze personal fixations and locates the gazed objects based on the interpretation. Then, a Boundary Preservation Module (BPM) is designed to introduce additional boundary information to guard the completeness of the gazed objects. Moreover, OLBP is organized in the mixed bottom-up and top-down manner with multiple types of deep supervision. Extensive experiments on the constructed PFOS dataset show the superiority of the proposed OLBP network over 17 state-of-the-art methods, and demonstrate the effectiveness of the proposed OLM and BPM components. The constructed PFOS dataset and the proposed OLBP network are available at https://github.com/MathLee/OLBPNet4PFOS.
作为人机交互的一种自然方式,注视为交互式图像分割提供了一种很有前景的解决方案。在本文中,我们专注于基于个人注视的目标分割(PFOS),以解决先前研究中的问题,比如缺乏合适的数据集以及基于注视的交互中的模糊性。具体而言,我们首先通过在现有的注视预测数据集上仔细收集像素级二进制标注数据,构建了一个新的PFOS数据集,该数据集有望极大地促进相关研究。然后,考虑到个人注视的特点,我们提出了一种基于目标定位和边界保留(OLBP)的新型网络来分割被注视的目标。具体来说,OLBP网络利用一个目标定位模块(OLM)来分析个人注视,并基于该解释定位被注视的目标。接着,设计了一个边界保留模块(BPM)来引入额外的边界信息,以确保被注视目标的完整性。此外,OLBP以混合的自底向上和自顶向下的方式组织,并具有多种类型的深度监督。在构建的PFOS数据集上进行的大量实验表明,所提出的OLBP网络优于17种最先进的方法,并证明了所提出的OLM和BPM组件的有效性。构建的PFOS数据集和所提出的OLBP网络可在https://github.com/MathLee/OLBPNet4PFOS上获取。