Suppr超能文献

使用成对和对比训练对痴呆老年患者进行非侵入性疼痛监测。

Unobtrusive Pain Monitoring in Older Adults With Dementia Using Pairwise and Contrastive Training.

出版信息

IEEE J Biomed Health Inform. 2021 May;25(5):1450-1462. doi: 10.1109/JBHI.2020.3045743. Epub 2021 May 11.

Abstract

Although pain is frequent in old age, older adults are often undertreated for pain. This is especially the case for long-term care residents with moderate to severe dementia who cannot report their pain because of cognitive impairments that accompany dementia. Nursing staff acknowledge the challenges of effectively recognizing and managing pain in long-term care facilities due to lack of human resources and, sometimes, expertise to use validated pain assessment approaches on a regular basis. Vision-based ambient monitoring will allow for frequent automated assessments so care staff could be automatically notified when signs of pain are displayed. However, existing computer vision techniques for pain detection are not validated on faces of older adults or people with dementia, and this population is not represented in existing facial expression datasets of pain. We present the first fully automated vision-based technique validated on a dementia cohort. Our contributions are threefold. First, we develop a deep learning-based computer vision system for detecting painful facial expressions on a video dataset that is collected unobtrusively from older adult participants with and without dementia. Second, we introduce a pairwise comparative inference method that calibrates to each person and is sensitive to changes in facial expression while using training data more efficiently than sequence models. Third, we introduce a fast contrastive training method that improves cross-dataset performance. Our pain estimation model outperforms baselines by a wide margin, especially when evaluated on faces of people with dementia. Pre-trained model and demo code available at https://github.com/TaatiTeam/pain_detection_demo.

摘要

尽管疼痛在老年人中很常见,但老年人的疼痛治疗往往不足。这尤其适用于患有中度至重度痴呆症的长期护理居民,他们由于认知障碍而无法报告自己的疼痛,这些认知障碍伴随着痴呆症。护理人员承认,由于人力资源短缺,有时缺乏定期使用经过验证的疼痛评估方法的专业知识,因此在长期护理机构中有效地识别和管理疼痛存在挑战。基于视觉的环境监测将允许频繁的自动评估,以便在显示疼痛迹象时自动通知护理人员。然而,现有的用于疼痛检测的计算机视觉技术尚未在老年人或痴呆症患者的面部上进行验证,而现有的疼痛面部表情数据集也没有这一人群的代表。我们提出了第一个经过痴呆症队列验证的全自动基于视觉的技术。我们的贡献有三点。首先,我们开发了一种基于深度学习的计算机视觉系统,用于在视频数据集中检测有和没有痴呆症的老年人的痛苦面部表情。其次,我们引入了一种成对比较推断方法,该方法针对每个人进行校准,对面部表情的变化敏感,同时比序列模型更有效地使用训练数据。第三,我们引入了一种快速对比训练方法,提高了跨数据集的性能。我们的疼痛估计模型大大优于基线模型,尤其是在评估痴呆症患者的面部时。预训练模型和演示代码可在 https://github.com/TaatiTeam/pain_detection_demo 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验